Quantitative biomimetics of high-performance materials

IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ming Yang, Nicholas A. Kotov
{"title":"Quantitative biomimetics of high-performance materials","authors":"Ming Yang, Nicholas A. Kotov","doi":"10.1038/s41578-024-00753-3","DOIUrl":null,"url":null,"abstract":"<p>The ongoing need for materials with difficult-to-combine properties has driven dramatic advancements in the field of bioinspired and biomimetic (nano)structures. These materials blend order and disorder, making their structures difficult to describe and, thus, reproduce. Their practical design involves the approximate replication of geometries found in biological tissues, aiming to achieve desired functionalities using a diverse array of human-made molecular and nanoscale components. Although this approach led to the successful development of numerous high-performance nanocomposites, the rapidly growing demand for better and better materials in energy, water, health and other technologies necessitates an accelerated design process, multidimensional property assessment and, thus, a shift towards quantitative biomimetics. In this Perspective, we approach the design of complex bioinspired materials from the standpoint of interfacial chemistry and physics. Analysing typical examples of biological composites and their successful replicates, we propose a framework based on Taylor series and property differentials that quantifies their interdependence. Five specific cases are considered for limiting their cross-products in Taylor expansions, including discontinuities of differentials at interfaces and multiple scales of organization. We also discuss how the integration of theory, simulations and machine learning is central to the development of quantitative biomimetics. This approach will enable the <i>n</i>-dimensional optimization of contrarian properties by leveraging materials with a high volumetric density of interfaces, graph theoretical description of complex structures and hierarchical multiscale architectures.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"27 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-024-00753-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ongoing need for materials with difficult-to-combine properties has driven dramatic advancements in the field of bioinspired and biomimetic (nano)structures. These materials blend order and disorder, making their structures difficult to describe and, thus, reproduce. Their practical design involves the approximate replication of geometries found in biological tissues, aiming to achieve desired functionalities using a diverse array of human-made molecular and nanoscale components. Although this approach led to the successful development of numerous high-performance nanocomposites, the rapidly growing demand for better and better materials in energy, water, health and other technologies necessitates an accelerated design process, multidimensional property assessment and, thus, a shift towards quantitative biomimetics. In this Perspective, we approach the design of complex bioinspired materials from the standpoint of interfacial chemistry and physics. Analysing typical examples of biological composites and their successful replicates, we propose a framework based on Taylor series and property differentials that quantifies their interdependence. Five specific cases are considered for limiting their cross-products in Taylor expansions, including discontinuities of differentials at interfaces and multiple scales of organization. We also discuss how the integration of theory, simulations and machine learning is central to the development of quantitative biomimetics. This approach will enable the n-dimensional optimization of contrarian properties by leveraging materials with a high volumetric density of interfaces, graph theoretical description of complex structures and hierarchical multiscale architectures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Reviews Materials
Nature Reviews Materials Materials Science-Biomaterials
CiteScore
119.40
自引率
0.40%
发文量
107
期刊介绍: Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments. Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信