Kara Lavender Law, Margaret J. Sobkowicz, Michael P. Shaver, Mark E. Hahn
{"title":"Untangling the chemical complexity of plastics to improve life cycle outcomes","authors":"Kara Lavender Law, Margaret J. Sobkowicz, Michael P. Shaver, Mark E. Hahn","doi":"10.1038/s41578-024-00705-x","DOIUrl":"10.1038/s41578-024-00705-x","url":null,"abstract":"A diversity of chemicals are intentionally added to plastics to enhance their properties and aid in manufacture. Yet the accumulated chemical composition of these materials is essentially unknown even to those within the supply chain, let alone to consumers or recyclers. Recent legislated and voluntary commitments to increase recycled content in plastic products highlight the practical challenges wrought by these chemical mixtures, amid growing public concern about the impacts of plastic-associated chemicals on environmental and human health. In this Perspective, we offer guidance for plastics manufacturers to collaborate across sectors and critically assess their use of added chemicals. The ultimate goal is to use fewer and better additives to promote a circular plastics economy with minimal risk to humans and the environment. Additives are essential to the diverse use of plastics, yet pose risks to health and recycling quality. Collaboration across supply chains, disclosure of composition and risks, and improved additive design can enable more sustainable plastics.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 9","pages":"657-667"},"PeriodicalIF":79.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Padovani, Paolo La Torraca, Jack Strand, Luca Larcher, Alexander L. Shluger
{"title":"Dielectric breakdown of oxide films in electronic devices","authors":"Andrea Padovani, Paolo La Torraca, Jack Strand, Luca Larcher, Alexander L. Shluger","doi":"10.1038/s41578-024-00702-0","DOIUrl":"10.1038/s41578-024-00702-0","url":null,"abstract":"Dielectric breakdown is a sudden and catastrophic increase in the conductivity of an insulator caused by electrical stress. It is one of the major reliability issues in electronic devices using insulating films as gate insulators and in energy and memory capacitors. Despite extensive studies, our understanding of the physical mechanisms driving the breakdown process remains incomplete, and atomistic models describing the dielectric breakdown are controversial. This Review surveys the enormous amount of data and knowledge accumulated from experimental and theoretical studies of dielectric breakdown in different insulating materials, focusing on describing phenomenological models and novel computational approaches. Dielectric breakdown is a major reliability issue in electronic devices. This Review discusses the data and knowledge accumulated from experimental and theoretical studies of dielectric breakdown in different insulating materials, with a focus on phenomenological models and novel computational approaches.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 9","pages":"607-627"},"PeriodicalIF":79.8,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Boosting the performance of plastic thermoelectrics","authors":"Giulia Pacchioni","doi":"10.1038/s41578-024-00716-8","DOIUrl":"10.1038/s41578-024-00716-8","url":null,"abstract":"An article in Nature presents a polymeric thermoelectric material with a figure of merit of 1.28.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 9","pages":"604-604"},"PeriodicalIF":79.8,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Activity versus stability of atomically dispersed transition-metal electrocatalysts","authors":"Gang Wu, Piotr Zelenay","doi":"10.1038/s41578-024-00703-z","DOIUrl":"10.1038/s41578-024-00703-z","url":null,"abstract":"Polymer electrolyte fuel cells operating on clean and sustainable hydrogen are an attractive solution for clean transportation. However, polymer electrolyte fuel cells are costly owing to the use of considerable amounts of platinum group metal (PGM) catalysts, which are needed to catalyse the very slow oxygen reduction reaction at the cathode. The most attractive path in that regard is a complete replacement of precious metal catalysts by PGM-free materials with similar or better performance. Since 2010, numerous promising catalysts have been proposed for PGM-free electrocatalysis. However, the best-performing catalysts do not yet meet the requirements of practical systems. One important hurdle in catalyst discovery is relying heavily on empirical rather than rational design-based approaches. This Perspective article focuses on the most promising PGM-free oxygen reduction reaction catalysts based on atomically dispersed, nitrogen-coordinated single-atom metal sites (M–N–C catalysts). We specifically concentrate on the active-site structure and critical factors governing catalytic activity and performance durability. We propose potentially effective strategies for improving performance by controlling the catalyst structure at the atomic scale, mesoscale and nanoscale. We highlight the importance of overcoming often-observed activity–stability trade-offs and the importance of advanced modelling for the rational design of catalysts. Platinum group metal-free electrocatalysts that utilize atomically dispersed, nitrogen-coordinated transition-metal sites in carbon are a promising replacement for platinum-based oxygen reduction reaction catalysts in fuel cells. This Perspective article offers a concise discussion on addressing remaining challenges related to activity–stability trade-offs by precisely controlling catalyst structures at multiple scales.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 9","pages":"643-656"},"PeriodicalIF":79.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensing how an embryo takes shape","authors":"Ariane Vartanian","doi":"10.1038/s41578-024-00712-y","DOIUrl":"10.1038/s41578-024-00712-y","url":null,"abstract":"An article in Nature Materials describes the bioprinting of hydrogel force sensors directly into the tissues of live embryos to quantify the mechanical forces driving morphogenesis.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 8","pages":"533-533"},"PeriodicalIF":79.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guochen Bao, Renren Deng, Dayong Jin, Xiaogang Liu
{"title":"Hidden triplet states at hybrid organic–inorganic interfaces","authors":"Guochen Bao, Renren Deng, Dayong Jin, Xiaogang Liu","doi":"10.1038/s41578-024-00704-y","DOIUrl":"https://doi.org/10.1038/s41578-024-00704-y","url":null,"abstract":"<p>Triplet states have been widely studied in phosphorescent molecules, lanthanide complexes and triplet–triplet annihilation systems, in which they have a critical role in energy transfer processes. However, advances have also shed light on their importance in organic–inorganic hybrid materials, wherein they can be used for decoding energy transfer mechanisms, enhancing interfacial energy transfer and attaining new properties. In this Review, we provide an overview of triplet properties, activation strategies and regulatory approaches. Our focus is on their crucial contribution to organic–inorganic hybrids, including inorganic semiconductor-sensitized triplet–triplet annihilation, the utilization of triplet reservoirs for thermally activated delayed photoluminescence, singlet exciton fission-induced silicon sensitization, dye-triplet-mediated upconversion nanoparticles, and other triplet systems. We discuss potential applications, exciting challenges, and opportunities for the advancement of triplet-mediated organic–inorganic hybrid materials.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"51 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A biomass-derived material for passive radiative cooling","authors":"Charlotte Allard","doi":"10.1038/s41578-024-00710-0","DOIUrl":"10.1038/s41578-024-00710-0","url":null,"abstract":"An article in Science presents a sustainable biomass-derived material for efficient passive radiative cooling.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 8","pages":"534-534"},"PeriodicalIF":79.8,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D cell networks advance bone-on-a-chip","authors":"Sunjie Ye","doi":"10.1038/s41578-024-00709-7","DOIUrl":"10.1038/s41578-024-00709-7","url":null,"abstract":"An article in Nature Communications presents a synthetic biodegradable void-forming hydrogel that supports in vitro formation of 3D networks from human primary cells for bone-on-a-chip applications.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 8","pages":"532-532"},"PeriodicalIF":79.8,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cool pigments as an urban heat island mitigation strategy for population health","authors":"Joya A. Cooley, Mojgan Sami","doi":"10.1038/s41578-024-00707-9","DOIUrl":"10.1038/s41578-024-00707-9","url":null,"abstract":"‘Cool’ pigments are a potential rapid mitigation strategy for urban areas that experience excessive heat. The impacts of this technology extend beyond infrastructure to moderate public health risks of excessive heat in vulnerable neighbourhoods. Broadly, team science and interdisciplinary collaboration are key to addressing society’s urgent issues, including climate change.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 9","pages":"601-602"},"PeriodicalIF":79.8,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141631480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Moiré materials keep on giving","authors":"","doi":"10.1038/s41578-024-00698-7","DOIUrl":"10.1038/s41578-024-00698-7","url":null,"abstract":"Thanks to improved control of device fabrication and an expanding characterization toolbox, moiré materials stay in the spotlight as we discover more about the unique phenomena they realize.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 7","pages":"451-451"},"PeriodicalIF":79.8,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41578-024-00698-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141556744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}