Kübra Kaygisiz, Deborah Sementa, Vignesh Athiyarath, Xi Chen, Rein V. Ulijn
{"title":"Context dependence in assembly code for supramolecular peptide materials and systems","authors":"Kübra Kaygisiz, Deborah Sementa, Vignesh Athiyarath, Xi Chen, Rein V. Ulijn","doi":"10.1038/s41578-025-00782-6","DOIUrl":null,"url":null,"abstract":"<p>Living systems provide the most sophisticated materials known. These materials are created from a few dozen building blocks that are driven to self-organize by covalent and non-covalent interactions. Biology’s building blocks can be repurposed for the design of synthetic materials that life has not explored. In this Review, we examine the bottom-up design, discovery and evolution of self-assembling peptides by considering the entire supramolecular interaction space available to their constituent amino acids. Our approach focuses on sequence context, or how peptide sequence and environmental conditions collectively influence peptide self-assembly outcomes. We discuss examples of peptides that assemble through multimodal backbone, side chain and water interactions. We conclude that a more systematic (comparing sequences side-by-side), integrated (pairing computation and experiment) and holistic (considering peptide, solvent and environment) approach is required to better understand and fully exploit amino acids as a universal assembly code. This goal is particularly timely, because laboratory automation and artificial intelligence now have the potential to accelerate discoveries in these highly modular and complex materials, beyond the limited sequence space that biology uses.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"49 1","pages":""},"PeriodicalIF":79.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41578-025-00782-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Living systems provide the most sophisticated materials known. These materials are created from a few dozen building blocks that are driven to self-organize by covalent and non-covalent interactions. Biology’s building blocks can be repurposed for the design of synthetic materials that life has not explored. In this Review, we examine the bottom-up design, discovery and evolution of self-assembling peptides by considering the entire supramolecular interaction space available to their constituent amino acids. Our approach focuses on sequence context, or how peptide sequence and environmental conditions collectively influence peptide self-assembly outcomes. We discuss examples of peptides that assemble through multimodal backbone, side chain and water interactions. We conclude that a more systematic (comparing sequences side-by-side), integrated (pairing computation and experiment) and holistic (considering peptide, solvent and environment) approach is required to better understand and fully exploit amino acids as a universal assembly code. This goal is particularly timely, because laboratory automation and artificial intelligence now have the potential to accelerate discoveries in these highly modular and complex materials, beyond the limited sequence space that biology uses.
期刊介绍:
Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments.
Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.