Nature EnergyPub Date : 2024-10-14DOI: 10.1038/s41560-024-01650-3
Erkan Aydin
{"title":"Raising the bar for breakdown","authors":"Erkan Aydin","doi":"10.1038/s41560-024-01650-3","DOIUrl":"10.1038/s41560-024-01650-3","url":null,"abstract":"Perovskite solar cells can be damaged when partially shaded, owing to currents flowing in reverse. Two research groups have now increased the breakdown voltage of the perovskite devices (the tolerance against this reverse bias degradation), one by using multilayer charge-selective contact stacks on the cathode side, and the other by using relatively thick, dense electrodes on the anode side.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 10","pages":"1183-1184"},"PeriodicalIF":49.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-10-14DOI: 10.1038/s41560-024-01653-0
Valeria Vallejo, Quoc Nguyen, Arvind P. Ravikumar
{"title":"Geospatial variation in carbon accounting of hydrogen production and implications for the US Inflation Reduction Act","authors":"Valeria Vallejo, Quoc Nguyen, Arvind P. Ravikumar","doi":"10.1038/s41560-024-01653-0","DOIUrl":"10.1038/s41560-024-01653-0","url":null,"abstract":"Low-carbon hydrogen is considered a key component of global energy system decarbonization strategy. The US Inflation Reduction Act incentivizes low-carbon hydrogen production through tax credits that vary based on life-cycle greenhouse gas emissions intensity of hydrogen. Blue hydrogen or hydrogen produced from natural gas coupled with carbon capture and sequestration is one such pathway. Here we develop a geospatial, measurement-informed model to estimate supply-chain specific life-cycle greenhouse gas emissions intensity of blue hydrogen produced with natural gas sourced from the Marcellus and Permian shale basins. We find that blue hydrogen production using Permian gas has a life-cycle emissions intensity of 7.4 kg carbon dioxide equivalent per kg hydrogen (kgCO2e kg−1 H2), more than twice that of hydrogen produced using Marcellus gas of 3.3 kgCO2e kg−1 H2. Eligibility for tax credits should therefore be based on life-cycle assessments that are supply-chain specific and measurement informed to ensure blue hydrogen projects are truly low carbon. New work highlights the importance of basing US Inflation Reduction Act tax credits for low-carbon hydrogen production on life-cycle greenhouse gas emissions intensity assessments that are project- and supply-chain specific and informed by direct measurements of methane emissions.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 12","pages":"1571-1582"},"PeriodicalIF":49.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-024-01653-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-10-11DOI: 10.1038/s41560-024-01654-z
Xiao Zhang, Zhiwei Fang, Peng Zhu, Yang Xia, Haotian Wang
{"title":"Electrochemical regeneration of high-purity CO2 from (bi)carbonates in a porous solid electrolyte reactor for efficient carbon capture","authors":"Xiao Zhang, Zhiwei Fang, Peng Zhu, Yang Xia, Haotian Wang","doi":"10.1038/s41560-024-01654-z","DOIUrl":"https://doi.org/10.1038/s41560-024-01654-z","url":null,"abstract":"<p>Carbon dioxide (CO<sub>2</sub>) and absorbent regeneration are the most energy-intensive processes in carbon capture loops. Conventional carbon capture technologies typically consume substantial amounts of heat and involve multiple steps for regeneration. Here we demonstrated one-step electrochemical regeneration of CO<sub>2</sub> and alkaline absorbent from carbon-containing solutions in a modular porous solid electrolyte (PSE) reactor. By performing hydrogen evolution and oxidation redox reactions, our PSE reactor selectively split NaHCO<sub>3</sub>/Na<sub>2</sub>CO<sub>3</sub> solutions, which typically come from air contactors after CO<sub>2</sub> absorption, into NaOH absorbent in the catholyte and high-purity CO<sub>2</sub> gas in the PSE layer. No chemicals were consumed and no by-products were generated. High Na<sup>+</sup>-ion transport number (~90%), high capture capacity retention (~90%), low energy consumptions (50 kJ mol<sub>CO2</sub><sup>−1</sup> and 118 kJ mol<sub>CO2</sub><sup>−1</sup> at 1 mA cm<sup>−2</sup> and 100 mA cm<sup>−2</sup> for bicarbonate, respectively) and long-term stability (>100 hours) were demonstrated. We achieved industrially relevant carbon regeneration rates of up to 1 A cm<sup>−2</sup> (~18 mmol cm<sup>−2</sup> h<sup>−1</sup>), highlighting the promising application potential.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"228 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-10-07DOI: 10.1038/s41560-024-01607-6
{"title":"Fair energy finance increases global equity in the green energy transition","authors":"","doi":"10.1038/s41560-024-01607-6","DOIUrl":"10.1038/s41560-024-01607-6","url":null,"abstract":"Five climate–energy–economy models are used to explore the effect of reducing the cost gap in energy financing between developed and developing countries through fair-finance. Such convergence is projected to increase energy availability, affordability, and sustainability in developing countries, thereby improving energy justice.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 10","pages":"1189-1190"},"PeriodicalIF":49.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-10-07DOI: 10.1038/s41560-024-01639-y
Jie Xiao, Nicole Adelstein, Yujing Bi, Wenjuan Bian, Jordi Cabana, Corie L. Cobb, Yi Cui, Shen J. Dillon, Marca M. Doeff, Saiful M. Islam, Kevin Leung, Mengya Li, Feng Lin, Jun Liu, Hongmei Luo, Amy C. Marschilok, Ying Shirley Meng, Yue Qi, Ritu Sahore, Kayla G. Sprenger, Robert C. Tenent, Michael F. Toney, Wei Tong, Liwen F. Wan, Chongmin Wang, Stephen E. Weitzner, Bingbin Wu, Yaobin Xu
{"title":"Assessing cathode–electrolyte interphases in batteries","authors":"Jie Xiao, Nicole Adelstein, Yujing Bi, Wenjuan Bian, Jordi Cabana, Corie L. Cobb, Yi Cui, Shen J. Dillon, Marca M. Doeff, Saiful M. Islam, Kevin Leung, Mengya Li, Feng Lin, Jun Liu, Hongmei Luo, Amy C. Marschilok, Ying Shirley Meng, Yue Qi, Ritu Sahore, Kayla G. Sprenger, Robert C. Tenent, Michael F. Toney, Wei Tong, Liwen F. Wan, Chongmin Wang, Stephen E. Weitzner, Bingbin Wu, Yaobin Xu","doi":"10.1038/s41560-024-01639-y","DOIUrl":"10.1038/s41560-024-01639-y","url":null,"abstract":"The cathode–electrolyte interphase plays a pivotal role in determining the usable capacity and cycling stability of electrochemical cells, yet it is overshadowed by its counterpart, the solid–electrolyte interphase. This is primarily due to the prevalence of side reactions, particularly at low potentials on the negative electrode, especially in state-of-the-art Li-ion batteries where the charge cutoff voltage is limited. However, as the quest for high-energy battery technologies intensifies, there is a pressing need to advance the study of cathode–electrolyte interphase properties. Here, we present a comprehensive approach to analyse the cathode–electrolyte interphase in battery systems. We underscore the importance of employing model cathode materials and coin cell protocols to establish baseline performance. Additionally, we delve into the factors behind the inconsistent and occasionally controversial findings related to the cathode–electrolyte interphase. We also address the challenges and opportunities in characterizing and simulating the cathode–electrolyte interphase, offering potential solutions to enhance its relevance to real-world applications. The cathode–electrolyte interphase (CEI) is vital for battery cell capacity and stability but receives less attention than the solid–electrolyte interphase. The authors review CEI properties, emphasize using model cathode materials and coin cell protocols, and address challenges and opportunities in characterizing and simulating CEI for real-world applications.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 12","pages":"1463-1473"},"PeriodicalIF":49.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-10-07DOI: 10.1038/s41560-024-01632-5
Jiafeng Lei, Yi-Chun Lu
{"title":"Building interphases for electrode-free batteries","authors":"Jiafeng Lei, Yi-Chun Lu","doi":"10.1038/s41560-024-01632-5","DOIUrl":"10.1038/s41560-024-01632-5","url":null,"abstract":"Deposition–dissolution reactions are key to the function of rechargeable batteries, but the limited reversibility of plating/stripping shortens their lifespan. Now, a liquid crystal interphase is shown to control deposition in preferred orientations, enabling dual-electrode-free batteries with enhanced reversibility and increased energy density.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 11","pages":"1325-1326"},"PeriodicalIF":49.7,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-10-02DOI: 10.1038/s41560-024-01649-w
Anthony L. Cheng, Erica R. H. Fuchs, Jeremy J. Michalek
{"title":"US industrial policy may reduce electric vehicle battery supply chain vulnerabilities and influence technology choice","authors":"Anthony L. Cheng, Erica R. H. Fuchs, Jeremy J. Michalek","doi":"10.1038/s41560-024-01649-w","DOIUrl":"10.1038/s41560-024-01649-w","url":null,"abstract":"We analyse US Inflation Reduction Act (IRA) incentives for electric vehicle battery technology and supply chain decisions. We find that the total value of available credits exceeds estimated battery production costs, but qualifying for all available credits is difficult. IRA cell and module credits alone bring estimated US battery production costs in line with China. In contrast, IRA material extraction and processing credits are modest. IRA’s end-user purchase credits are restricted to electric vehicles whose battery supply chains exclude foreign entities of concern, including China. This incentivizes diversification of the entire supply chain, but leasing avoids these restrictions. Lithium iron phosphate batteries have potential to more easily reduce supply chain vulnerabilities and qualify for incentives, but they have smaller total available incentives than nickel/cobalt-based batteries. Overall, the IRA primarily incentivizes downstream battery manufacturing diversification, whereas upstream supply implications depend on automaker responses to foreign entities of concern and leasing rules. The Inflation Reduction Act increases the competitiveness of US electric vehicle battery manufacturing and incentivizes supply chain diversification, but reducing vulnerabilities will depend on automaker choices in battery design and navigating regulations.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 12","pages":"1561-1570"},"PeriodicalIF":49.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-09-27DOI: 10.1038/s41560-024-01637-0
Selma Brynolf, Maria Grahn
{"title":"Flexibility with low environmental impact","authors":"Selma Brynolf, Maria Grahn","doi":"10.1038/s41560-024-01637-0","DOIUrl":"10.1038/s41560-024-01637-0","url":null,"abstract":"Not all parts of the transport sector are easy to directly electrify, therefore liquid energy carriers with lower environmental impacts than fossil fuels are needed to aid decarbonization. Research now reports that synthetic fuels with optimized alkane/alcohol content are promising drop-in alternatives.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 10","pages":"1179-1180"},"PeriodicalIF":49.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-09-27DOI: 10.1038/s41560-024-01640-5
L. van der Most, K. van der Wiel, R. M. J. Benders, P. W. Gerbens-Leenes, R. Bintanja
{"title":"Temporally compounding energy droughts in European electricity systems with hydropower","authors":"L. van der Most, K. van der Wiel, R. M. J. Benders, P. W. Gerbens-Leenes, R. Bintanja","doi":"10.1038/s41560-024-01640-5","DOIUrl":"10.1038/s41560-024-01640-5","url":null,"abstract":"As Europe’s renewable energy capacities expand, electricity systems face increased risks of energy droughts—periods of low production coinciding with high demand. We evaluate characteristics of electricity variability due to weather variations by calculating 1,600 years of daily production and demand. Focusing on five European countries—chosen for their energy mix including hydropower—we find that energy droughts result from processes that cause (temporally) compounding impacts in the energy and meteorological system. These can turn what might have been short-term droughts into prolonged high unmet energy demand. For instance, low reservoir inflows in spring quadruple the chance of prolonged energy droughts: reduced snowpack and rainfall lower hydro availability but also dry out subsoils, increasing the chance of heatwaves and therewith extending the energy problems into summer. We identify and quantify three compounding energy/climate conditions and the associated characteristics and risks of multi-year energy droughts, crucial for informing future energy system design. As Europe’s renewable energy grows, energy droughts become more likely. This analysis of daily production and demand from five EU countries shows that compounded weather impacts, such as low spring reservoir inflows, can quadruple drought risks in summer and winter.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 12","pages":"1474-1484"},"PeriodicalIF":49.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142324981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}