空穴传输层中锂掺杂剂对钙钛矿太阳能电池昼夜循环稳定性的影响

IF 60.1 1区 材料科学 Q1 ENERGY & FUELS
Jinzheng Zhao, Jiupeng Cao, Jingjin Dong, Zihao Li, Ying Chu, Aifei Wang, Fangfang Wang, Bingxu Liu, Rui Xu, Jingyu Zhang, Bocong Zhang, Xiaopeng Hu, Wenjian Yan, Chi Zhang, Shaohua Chen, Laiyuan Wang, Gaojie Chen, Wei Huang, Tianshi Qin
{"title":"空穴传输层中锂掺杂剂对钙钛矿太阳能电池昼夜循环稳定性的影响","authors":"Jinzheng Zhao, Jiupeng Cao, Jingjin Dong, Zihao Li, Ying Chu, Aifei Wang, Fangfang Wang, Bingxu Liu, Rui Xu, Jingyu Zhang, Bocong Zhang, Xiaopeng Hu, Wenjian Yan, Chi Zhang, Shaohua Chen, Laiyuan Wang, Gaojie Chen, Wei Huang, Tianshi Qin","doi":"10.1038/s41560-025-01856-z","DOIUrl":null,"url":null,"abstract":"<p>Lithium cation dopants enhance hole-transport efficiency and optimize interfacial charge extraction in the hole-transporting layers of perovskite solar cells. Although the migration of lithium cations is known to induce phase transition from α-phase to δ-phase in perovskites, reports of long-term device stability present apparent contradictions. Here we show that, under dark/light alternating conditions, lithium migration induces a rapid degradation of the α-phase perovskite. This degradation is not observed under continuous light-only or dark-only conditions commonly used within the field to test the devices. To address the instability under dark/light cycling, we replace the lithium dopant with a methylammonium dopant. Importantly, we show no unreacted methylammonium dopant in the hole-transport layer film different to the lithium dopant, hinting at a better device stability. We achieve an efficiency of 26.1% (25.6% certified) and <i>T</i><sub>95</sub> lifetimes (that is, time for the device efficiency to decay to 95% of its initial value) of over 1,200 h of continuous light–dark cycling (ISOS-LC-1 certified) and 3,000 voltage-on/off cycles, conditions that are relevant to real-world operation.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"127 1","pages":""},"PeriodicalIF":60.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of lithium dopants in hole-transporting layers on perovskite solar cell stability under day–night cycling\",\"authors\":\"Jinzheng Zhao, Jiupeng Cao, Jingjin Dong, Zihao Li, Ying Chu, Aifei Wang, Fangfang Wang, Bingxu Liu, Rui Xu, Jingyu Zhang, Bocong Zhang, Xiaopeng Hu, Wenjian Yan, Chi Zhang, Shaohua Chen, Laiyuan Wang, Gaojie Chen, Wei Huang, Tianshi Qin\",\"doi\":\"10.1038/s41560-025-01856-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium cation dopants enhance hole-transport efficiency and optimize interfacial charge extraction in the hole-transporting layers of perovskite solar cells. Although the migration of lithium cations is known to induce phase transition from α-phase to δ-phase in perovskites, reports of long-term device stability present apparent contradictions. Here we show that, under dark/light alternating conditions, lithium migration induces a rapid degradation of the α-phase perovskite. This degradation is not observed under continuous light-only or dark-only conditions commonly used within the field to test the devices. To address the instability under dark/light cycling, we replace the lithium dopant with a methylammonium dopant. Importantly, we show no unreacted methylammonium dopant in the hole-transport layer film different to the lithium dopant, hinting at a better device stability. We achieve an efficiency of 26.1% (25.6% certified) and <i>T</i><sub>95</sub> lifetimes (that is, time for the device efficiency to decay to 95% of its initial value) of over 1,200 h of continuous light–dark cycling (ISOS-LC-1 certified) and 3,000 voltage-on/off cycles, conditions that are relevant to real-world operation.</p>\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":60.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-025-01856-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01856-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

锂离子掺杂提高了钙钛矿太阳能电池空穴输运效率,优化了空穴输运层的界面电荷提取。虽然已知锂离子的迁移会导致钙钛矿从α-相转变为δ-相,但长期器件稳定性的报道存在明显的矛盾。研究表明,在暗/光交替条件下,锂离子迁移导致α-相钙钛矿的快速降解。在通常用于现场测试设备的连续仅光或仅暗条件下,不会观察到这种退化。为了解决暗/光循环下的不稳定性,我们用甲基铵掺杂剂代替锂掺杂剂。重要的是,我们发现在空穴传输层薄膜中没有未反应的甲基铵掺杂物,这与锂掺杂物不同,暗示了更好的器件稳定性。我们实现了26.1%的效率(25.6%认证)和T95寿命(即器件效率衰减到其初始值的95%的时间),超过1200小时的连续光暗循环(iso - lc -1认证)和3000个电压开/关循环,这些条件与实际操作相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of lithium dopants in hole-transporting layers on perovskite solar cell stability under day–night cycling

Impact of lithium dopants in hole-transporting layers on perovskite solar cell stability under day–night cycling

Lithium cation dopants enhance hole-transport efficiency and optimize interfacial charge extraction in the hole-transporting layers of perovskite solar cells. Although the migration of lithium cations is known to induce phase transition from α-phase to δ-phase in perovskites, reports of long-term device stability present apparent contradictions. Here we show that, under dark/light alternating conditions, lithium migration induces a rapid degradation of the α-phase perovskite. This degradation is not observed under continuous light-only or dark-only conditions commonly used within the field to test the devices. To address the instability under dark/light cycling, we replace the lithium dopant with a methylammonium dopant. Importantly, we show no unreacted methylammonium dopant in the hole-transport layer film different to the lithium dopant, hinting at a better device stability. We achieve an efficiency of 26.1% (25.6% certified) and T95 lifetimes (that is, time for the device efficiency to decay to 95% of its initial value) of over 1,200 h of continuous light–dark cycling (ISOS-LC-1 certified) and 3,000 voltage-on/off cycles, conditions that are relevant to real-world operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信