Nature Energy最新文献

筛选
英文 中文
Capacity estimation of home storage systems using field data 利用现场数据估算家庭存储系统的容量
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-11-20 DOI: 10.1038/s41560-024-01662-z
{"title":"Capacity estimation of home storage systems using field data","authors":"","doi":"10.1038/s41560-024-01662-z","DOIUrl":"https://doi.org/10.1038/s41560-024-01662-z","url":null,"abstract":"Although regulation within the European Union requires manufacturers of battery storage systems to provide state-of-health estimates to customers, no standardized methods for such estimates exist. Now, a large open-access dataset from eight years of field measurements of home storage systems is presented, enabling the development of a capacity estimation method.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"252 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells 利用绿色溶剂为串联太阳能电池规模化制造宽带隙过氧化物
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-11-15 DOI: 10.1038/s41560-024-01672-x
Chenyang Duan, Han Gao, Ke Xiao, Vishal Yeddu, Bo Wang, Renxing Lin, Hongfei Sun, Pu Wu, Yameen Ahmed, Anh Dinh Bui, Xuntian Zheng, Yurui Wang, Jin Wen, Yinke Wang, Wennan Ou, Chenshuaiyu Liu, Yuhong Zhang, Hieu Nguyen, Haowen Luo, Ludong Li, Ye Liu, Xin Luo, Makhsud I. Saidaminov, Hairen Tan
{"title":"Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells","authors":"Chenyang Duan, Han Gao, Ke Xiao, Vishal Yeddu, Bo Wang, Renxing Lin, Hongfei Sun, Pu Wu, Yameen Ahmed, Anh Dinh Bui, Xuntian Zheng, Yurui Wang, Jin Wen, Yinke Wang, Wennan Ou, Chenshuaiyu Liu, Yuhong Zhang, Hieu Nguyen, Haowen Luo, Ludong Li, Ye Liu, Xin Luo, Makhsud I. Saidaminov, Hairen Tan","doi":"10.1038/s41560-024-01672-x","DOIUrl":"https://doi.org/10.1038/s41560-024-01672-x","url":null,"abstract":"<p>Commercializing perovskite-based tandems necessitates environmentally friendly solvents for scalable fabrication of efficient wide-bandgap (WBG) (1.65–1.80 eV) perovskites. However, the green solvents developed for formamidinium lead iodide-based ~1.50-eV-bandgap perovskites are unsuitable for WBG perovskites due to the low solubility of caesium and bromide salts, leading to reliance on toxic <i>N</i>,<i>N</i>-dimethylformamide solvent. Here we present a green solvent system comprising dimethyl sulfoxide and acetonitrile to effectively dissolve the named salts, with the addition of ethyl alcohol to prevent precursor degradation and to extend the solution processing window. Using this green solvent mixture, we achieve blade-coated WBG perovskite solar cells with power conversion efficiencies of 19.6% (1.78 eV) and 21.5% (1.68 eV). We then demonstrate 20.25-cm<sup>2</sup> all-perovskite tandem solar modules with a power conversion efficiency of 23.8%. Furthermore, we achieved WBG perovskites deposited in ambient air and narrow-bandgap perovskites fabricated using the same green solvents, which promotes the viability of environmentally friendly fabrication.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"37 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyanions stabilize anion redox 多阴离子可稳定阴离子氧化还原
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-11-15 DOI: 10.1038/s41560-024-01664-x
Jagjit Nanda
{"title":"Polyanions stabilize anion redox","authors":"Jagjit Nanda","doi":"10.1038/s41560-024-01664-x","DOIUrl":"https://doi.org/10.1038/s41560-024-01664-x","url":null,"abstract":"Traditionally, lithium-ion battery cathodes face a trade-off between the energy density afforded by high-voltage anion reduction−oxidation and long-term stability. Now, incorporating polyanion motifs into a disordered oxide crystal structure is shown to stabilize the oxygen sublattice, improving capacity retention at high energy densities.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"197 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogeneous coverage of the low-dimensional perovskite passivation layer for formamidinium–caesium perovskite solar modules 用于甲脒铯包晶太阳能模块的低维包晶石钝化层的均匀覆盖率
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-11-12 DOI: 10.1038/s41560-024-01667-8
Jing Li, Chengkai Jin, Ruixuan Jiang, Jie Su, Ting Tian, Chunyang Yin, Jiashen Meng, Zongkui Kou, Sai Bai, Peter Müller-Buschbaum, Fuzhi Huang, Liqiang Mai, Yi-Bing Cheng, Tongle Bu
{"title":"Homogeneous coverage of the low-dimensional perovskite passivation layer for formamidinium–caesium perovskite solar modules","authors":"Jing Li, Chengkai Jin, Ruixuan Jiang, Jie Su, Ting Tian, Chunyang Yin, Jiashen Meng, Zongkui Kou, Sai Bai, Peter Müller-Buschbaum, Fuzhi Huang, Liqiang Mai, Yi-Bing Cheng, Tongle Bu","doi":"10.1038/s41560-024-01667-8","DOIUrl":"https://doi.org/10.1038/s41560-024-01667-8","url":null,"abstract":"<p>The formation of a homogeneous passivation layer based on phase-pure two-dimensional (2D) perovskites is a challenge for perovskite solar cells, especially when upscaling the devices to modules. Here we reveal a chain-length-dependent and halide-related phase separation problem of 2D perovskite growing on top of three-dimensional perovskites. We demonstrate that a homogeneous 2D perovskite passivation layer can be formed upon treatment of the perovskite layer with formamidinium bromide in long-chain ( &gt;10) alkylamine ligand salts. We achieve champion active-area efficiencies of 25.61%, 24.62% and 23.60% for antisolvent-free processed small- (0.14 cm<sup>2</sup>) and large-size (1.04 cm<sup>2</sup>) devices and mini-modules (13.44 cm<sup>2</sup>), respectively. This passivation strategy is compatible with printing technology, enabling champion aperture-area efficiencies of 18.90% and 17.59% for fully slot-die printed large solar modules with areas of 310 cm<sup>2</sup> and 802 cm<sup>2</sup>, respectively, demonstrating the feasibility of the upscaling manufacturing.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"72 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A wind of change in sustainability 可持续发展的变革之风
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-11-05 DOI: 10.1038/s41560-024-01666-9
Yi Guo, Xing-Yuan Miao
{"title":"A wind of change in sustainability","authors":"Yi Guo, Xing-Yuan Miao","doi":"10.1038/s41560-024-01666-9","DOIUrl":"https://doi.org/10.1038/s41560-024-01666-9","url":null,"abstract":"Fibre-reinforced epoxy-amine resins are common materials for wind turbine blades, yet they are challenging to recycle. Now, researchers formulate an alternative resin using biomass-derived polyester with easier-to-break covalent linkages, demonstrating the industrial manufacturability and recyclability of the resin with a nine-metre blade prototype.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"11 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of policy and module manufacturing learning in industrial decarbonization by small modular reactors 政策和模块制造学习在小型模块化反应堆工业脱碳中的作用
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-11-04 DOI: 10.1038/s41560-024-01665-w
Max Vanatta, William R. Stewart, Michael T. Craig
{"title":"The role of policy and module manufacturing learning in industrial decarbonization by small modular reactors","authors":"Max Vanatta, William R. Stewart, Michael T. Craig","doi":"10.1038/s41560-024-01665-w","DOIUrl":"https://doi.org/10.1038/s41560-024-01665-w","url":null,"abstract":"<p>Small modular reactors (SMRs) offer a unique solution to the challenge of decarbonizing mid- and high-temperature industrial processes. Here we develop deployment pathways for four SMR designs displacing natural gas in industrial heat processes at 925 facilities across the United States under diverse policy and factory or onsite learning conditions. We find that widespread SMR deployment in industry requires gas prices above US$6 per metric million British thermal unit, low capital cost over-runs and/or aggressive carbon taxes. At gas prices of US$6–10 per metric million British thermal unit, 7–55 gigawatt-thermal (GW<sub>t</sub>) of SMRs could be economically deployed by 2050, reducing annual emissions by up to 59 Mt of CO<sub>2</sub>-equivalent. Of this deployment, 2–24 GW<sub>t</sub> rely on module manufacturing learning within a factory. Widespread deployment potential hinges on avoiding substantial cost escalation for early investments. Policy levers such as direct subsidies are not effective at incentivizing sustainable deployment, but aggressive carbon taxes and investment tax credits provide effective support for SMR success.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"23 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells 界面质量和纳米级性能紊乱对合金化过氧化物太阳能电池稳定性的影响
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-10-30 DOI: 10.1038/s41560-024-01660-1
Kyle Frohna, Cullen Chosy, Amran Al-Ashouri, Florian Scheler, Yu-Hsien Chiang, Milos Dubajic, Julia E. Parker, Jessica M. Walker, Lea Zimmermann, Thomas A. Selby, Yang Lu, Bart Roose, Steve Albrecht, Miguel Anaya, Samuel D. Stranks
{"title":"The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells","authors":"Kyle Frohna, Cullen Chosy, Amran Al-Ashouri, Florian Scheler, Yu-Hsien Chiang, Milos Dubajic, Julia E. Parker, Jessica M. Walker, Lea Zimmermann, Thomas A. Selby, Yang Lu, Bart Roose, Steve Albrecht, Miguel Anaya, Samuel D. Stranks","doi":"10.1038/s41560-024-01660-1","DOIUrl":"https://doi.org/10.1038/s41560-024-01660-1","url":null,"abstract":"<p>Microscopy provides a proxy for assessing the operation of perovskite solar cells, yet most works in the literature have focused on bare perovskite thin films, missing charge transport and recombination losses present in full devices. Here we demonstrate a multimodal operando microscopy toolkit to measure and spatially correlate nanoscale charge transport losses, recombination losses and chemical composition. By applying this toolkit to the same scan areas of state-of-the-art, alloyed perovskite cells before and after extended operation, we show that devices with the highest macroscopic performance have the lowest initial performance spatial heterogeneity—a crucial link that is missed in conventional microscopy. We show that engineering stable interfaces is critical to achieving robust devices. Once the interfaces are stabilized, we show that compositional engineering to homogenize charge extraction and to minimize variations in local power conversion efficiency is critical to improve performance and stability. We find that in our device space, perovskites can tolerate spatial disorder in chemistry, but not charge extraction.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"111 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nationally determined contribution framework for energy transition minerals 国家确定的能源转型矿物贡献框架
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-10-29 DOI: 10.1038/s41560-024-01661-0
Julie Michelle Klinger, Gwendolyn K. Murphy, Coryn Wolk
{"title":"A nationally determined contribution framework for energy transition minerals","authors":"Julie Michelle Klinger, Gwendolyn K. Murphy, Coryn Wolk","doi":"10.1038/s41560-024-01661-0","DOIUrl":"https://doi.org/10.1038/s41560-024-01661-0","url":null,"abstract":"A framework for governments to define their domestic energy transition mineral needs, sources, and contributions to the global energy transition can improve domestic policies around the world and enable greater national and global coordination to avoid supply crises and resource conflicts.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"131 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transparency is key for energy and environment philanthropy 透明度是能源与环境慈善事业的关键
IF 56.7 1区 材料科学
Nature Energy Pub Date : 2024-10-28 DOI: 10.1038/s41560-024-01658-9
Isabella Gee
{"title":"Transparency is key for energy and environment philanthropy","authors":"Isabella Gee","doi":"10.1038/s41560-024-01658-9","DOIUrl":"https://doi.org/10.1038/s41560-024-01658-9","url":null,"abstract":"Transparency between researchers and funders is necessary to ensure interdisciplinary energy system decarbonization research is well funded, argues Isabella Gee.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"101 1","pages":""},"PeriodicalIF":56.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The path to accurate reporting 实现准确报告的途径
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2024-10-22 DOI: 10.1038/s41560-024-01663-y
{"title":"The path to accurate reporting","authors":"","doi":"10.1038/s41560-024-01663-y","DOIUrl":"10.1038/s41560-024-01663-y","url":null,"abstract":"Inconsistent reporting on energy materials and devices in research papers underscores the need for standardized protocols and greater transparency. Collaborative benchmarking initiatives are paving the way for more reliable and reproducible results.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 10","pages":"1175-1176"},"PeriodicalIF":49.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-024-01663-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142486684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信