Hongbin Xu, Yang Jeong Park, Zhichu Ren, Daniel J. Zheng, Davide Menga, Haojun Jia, Chenru Duan, Guanzhou Zhu, Yuriy Román-Leshkov, Yang Shao-Horn, Ju Li
{"title":"An actor–critic algorithm to maximize the power delivered from direct methanol fuel cells","authors":"Hongbin Xu, Yang Jeong Park, Zhichu Ren, Daniel J. Zheng, Davide Menga, Haojun Jia, Chenru Duan, Guanzhou Zhu, Yuriy Román-Leshkov, Yang Shao-Horn, Ju Li","doi":"10.1038/s41560-025-01804-x","DOIUrl":null,"url":null,"abstract":"<p>Optimizing nonlinear time-dependent control in complex energy systems such as direct methanol fuel cells (DMFCs) is a crucial engineering challenge. The long-term power delivery of DMFCs deteriorates as the electrocatalytic surfaces become fouled. Dynamic voltage adjustment can clean the surface and recover the activity of catalysts; however, manually identifying optimal control strategies considering multiple mechanisms is challenging. Here we demonstrated a nonlinear policy model (Alpha-Fuel-Cell) inspired by actor–critic reinforcement learning, which learns directly from real-world current–time trajectories to infer the state of catalysts during operation and generates a suitable action for the next timestep automatically. Moreover, the model can provide protocols to achieve the required power while significantly slowing the degradation of catalysts. Benefiting from this model, the time-averaged power delivered is 153% compared to constant potential operation for DMFCs over 12 hours. Our framework may be generalized to other energy device applications requiring long-time-horizon decision-making in the real world.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"23 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01804-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Optimizing nonlinear time-dependent control in complex energy systems such as direct methanol fuel cells (DMFCs) is a crucial engineering challenge. The long-term power delivery of DMFCs deteriorates as the electrocatalytic surfaces become fouled. Dynamic voltage adjustment can clean the surface and recover the activity of catalysts; however, manually identifying optimal control strategies considering multiple mechanisms is challenging. Here we demonstrated a nonlinear policy model (Alpha-Fuel-Cell) inspired by actor–critic reinforcement learning, which learns directly from real-world current–time trajectories to infer the state of catalysts during operation and generates a suitable action for the next timestep automatically. Moreover, the model can provide protocols to achieve the required power while significantly slowing the degradation of catalysts. Benefiting from this model, the time-averaged power delivered is 153% compared to constant potential operation for DMFCs over 12 hours. Our framework may be generalized to other energy device applications requiring long-time-horizon decision-making in the real world.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.