利用人工智能提高直接甲醇燃料电池的性能

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
{"title":"利用人工智能提高直接甲醇燃料电池的性能","authors":"","doi":"10.1038/s41560-025-01805-w","DOIUrl":null,"url":null,"abstract":"A method inspired by actor–critic reinforcement learning — Alpha-Fuel-Cell — has been developed to control and maximize the mean output electrical power of direct methanol fuel cells. This model monitors fuel cell states in real time and autonomously selects optimal actions to increase the efficiency and catalyst longevity.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"34 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging AI to enhance performance in direct methanol fuel cells\",\"authors\":\"\",\"doi\":\"10.1038/s41560-025-01805-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method inspired by actor–critic reinforcement learning — Alpha-Fuel-Cell — has been developed to control and maximize the mean output electrical power of direct methanol fuel cells. This model monitors fuel cell states in real time and autonomously selects optimal actions to increase the efficiency and catalyst longevity.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-025-01805-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01805-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

一种受actor-critic强化学习启发的方法- Alpha-Fuel-Cell -已被开发用于控制和最大化直接甲醇燃料电池的平均输出功率。该模型实时监测燃料电池状态,并自主选择最佳行为,以提高效率和催化剂寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leveraging AI to enhance performance in direct methanol fuel cells

Leveraging AI to enhance performance in direct methanol fuel cells
A method inspired by actor–critic reinforcement learning — Alpha-Fuel-Cell — has been developed to control and maximize the mean output electrical power of direct methanol fuel cells. This model monitors fuel cell states in real time and autonomously selects optimal actions to increase the efficiency and catalyst longevity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信