Nature Energy最新文献

筛选
英文 中文
Improving calculations of energy return on investment 改进能源投资回报率计算方法
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2025-01-10 DOI: 10.1038/s41560-024-01696-3
Charles A. S. Hall, Graham Palmer
{"title":"Improving calculations of energy return on investment","authors":"Charles A. S. Hall, Graham Palmer","doi":"10.1038/s41560-024-01696-3","DOIUrl":"10.1038/s41560-024-01696-3","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 2","pages":"149-150"},"PeriodicalIF":49.7,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142961636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerating green shipping with spatially optimized offshore charging stations 推进海上充电站空间优化绿色航运
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2025-01-09 DOI: 10.1038/s41560-024-01692-7
Ran Li, Hao Li, Wentao Huang, Hanqi Tao, Weiwu Xu, Nengling Tai, Canbing Li
{"title":"Accelerating green shipping with spatially optimized offshore charging stations","authors":"Ran Li, Hao Li, Wentao Huang, Hanqi Tao, Weiwu Xu, Nengling Tai, Canbing Li","doi":"10.1038/s41560-024-01692-7","DOIUrl":"10.1038/s41560-024-01692-7","url":null,"abstract":"The decarbonization of marine transport is a global challenge due to the range and capacity limitations of renewable ships. Offshore charging stations have emerged as an innovative solution, despite increased investment and extended voyage durations. Here we develop a route-specific model for the optimal placement and sizing of offshore charging stations to assess their economic, environmental and operational impacts. Analysing 34 global and regional shipping routes, we find that offshore charging stations can reduce the cost for electric ships by US$0.3–1.6 (MW km)−1 and greenhouse gas emissions by 1.04–8.91 kg (MW km)−1 by 2050. The economic cruising range for 6,500 20-foot equivalent unit electric ships can increase from 3,000 km to 9,000 km. Voyage time costs for these enhancements vary between a 0% and 30% grace period of the original delivery time frame. We further investigate power-to-ammonia offshore refuelling stations as a proxy for e-fuels, which could potentially replace heavy fuel oil ships for routes over 9,000 km with only a 5% grace period. Offshore charging stations could be a promising solution to enhance green shipping. This research considers their optimal placement and sizing, extending the economic range of renewable ships to 9,000 km without compromising shipping efficiency.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 2","pages":"243-254"},"PeriodicalIF":49.7,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses 钙钛矿太阳能电池的自组装双分子层,提高了对热应力的耐受性
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2025-01-06 DOI: 10.1038/s41560-024-01689-2
Bitao Dong, Mingyang Wei, Yuheng Li, Yingguo Yang, Wei Ma, Yueshuai Zhang, Yanbiao Ran, Meijie Cui, Ziru Su, Qunping Fan, Zhaozhao Bi, Tomas Edvinsson, Zhiqin Ding, Huanxin Ju, Shuai You, Shaik Mohammed Zakeeruddin, Xiong Li, Anders Hagfeldt, Michael Grätzel, Yuhang Liu
{"title":"Self-assembled bilayer for perovskite solar cells with improved tolerance against thermal stresses","authors":"Bitao Dong, Mingyang Wei, Yuheng Li, Yingguo Yang, Wei Ma, Yueshuai Zhang, Yanbiao Ran, Meijie Cui, Ziru Su, Qunping Fan, Zhaozhao Bi, Tomas Edvinsson, Zhiqin Ding, Huanxin Ju, Shuai You, Shaik Mohammed Zakeeruddin, Xiong Li, Anders Hagfeldt, Michael Grätzel, Yuhang Liu","doi":"10.1038/s41560-024-01689-2","DOIUrl":"10.1038/s41560-024-01689-2","url":null,"abstract":"The adoption of perovskite solar cells (PSCs) requires improved resistance to high temperatures and temperature variations. Hole-selective self-assembled monolayers (SAMs) have enabled progress in the performance of inverted PSCs, yet they may compromise temperature stability owing to desorption and weak interfacial contact. Here we developed a self-assembled bilayer by covalently interconnecting a phosphonic acid SAM with a triphenylamine upper layer. This polymerized network, formed through Friedel–Crafts alkylation, resisted thermal degradation up to 100 °C for 200 h. Meanwhile, the face-on-oriented upper layer exhibited adhesive contact with perovskites, leading to a 1.7-fold improvement in adhesion energy compared with the SAM–perovskite interface. We reported power conversion efficiencies exceeding 26% for inverted PSCs. The champion devices demonstrated less than 4% and 3% efficiency loss after 2,000 h damp heat exposure (85 °C and 85% relative humidity) and over 1,200 thermal cycles between −40 °C and 85 °C, respectively, meeting the temperature stability criteria outlined in the International Electrotechnical Commission 61215:2021 standards. To improve the tolerance of perovskite solar cells against high temperatures and temperature variations, Dong et al. covalently cross-link two molecules in the charge transport layer to strengthen adhesion with the perovskite layer.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 3","pages":"342-353"},"PeriodicalIF":49.7,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-024-01689-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrolyte tank costs are an overlooked factor in flow battery economics 电解液罐成本是液流电池经济性中一个被忽视的因素
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2025-01-03 DOI: 10.1038/s41560-024-01677-6
David Reber
{"title":"Electrolyte tank costs are an overlooked factor in flow battery economics","authors":"David Reber","doi":"10.1038/s41560-024-01677-6","DOIUrl":"10.1038/s41560-024-01677-6","url":null,"abstract":"The economic viability of flow battery systems has garnered substantial attention in recent years, but technoeconomic models often overlook the costs associated with electrolyte tanks. This work challenges the commonly assumed insignificance of electrolyte tank costs in flow battery research and demonstrates their substantial impact on overall system economics. Using prices quoted by globally distributed tank manufacturers, it is shown that tank costs in most published technoeconomic models are severely underestimated, if not entirely neglected. Back-of-the-envelope calculations show that electrolyte tanks may constitute up to 40% of the energy component (tank plus electrolyte) costs in MWh-scale flow battery systems. Standardization of flow battery components and the development of high-voltage chemistries are highlighted as paths towards decreasing costs and achieving greater market penetration. Electrolyte tank costs are often assumed insignificant in flow battery research. This work argues that these tanks can account for up to 40% of energy costs in large systems, suggesting that standardizing components and developing high-voltage chemistries could lower costs and improve market access.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 1","pages":"23-27"},"PeriodicalIF":49.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cycling under real-world conditions increases battery lifetime 在真实条件下循环可以延长电池寿命
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2025-01-03 DOI: 10.1038/s41560-024-01688-3
{"title":"Cycling under real-world conditions increases battery lifetime","authors":"","doi":"10.1038/s41560-024-01688-3","DOIUrl":"10.1038/s41560-024-01688-3","url":null,"abstract":"An ageing study of lithium-ion batteries reveals that dynamic cycling representative of electric vehicle driving increases battery lifetime by up to 38% compared with constant current cycling conventionally adopted for laboratory testing. This finding highlights the need for realistic load profiles in battery testing to capture ageing mechanisms relevant to real-word applications.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 2","pages":"162-163"},"PeriodicalIF":49.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient bandgaps in sulfide kesterite solar cells enable over 13% certified efficiency 硫化物钙钛矿太阳能电池的梯度带隙使认证效率超过13%
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2025-01-03 DOI: 10.1038/s41560-024-01681-w
Kang Yin, Jinlin Wang, Licheng Lou, Fanqi Meng, Xiao Xu, Bowen Zhang, Menghan Jiao, Jiangjian Shi, Dongmei Li, Huijue Wu, Yanhong Luo, Qingbo Meng
{"title":"Gradient bandgaps in sulfide kesterite solar cells enable over 13% certified efficiency","authors":"Kang Yin, Jinlin Wang, Licheng Lou, Fanqi Meng, Xiao Xu, Bowen Zhang, Menghan Jiao, Jiangjian Shi, Dongmei Li, Huijue Wu, Yanhong Luo, Qingbo Meng","doi":"10.1038/s41560-024-01681-w","DOIUrl":"10.1038/s41560-024-01681-w","url":null,"abstract":"Sulfide kesterite Cu2ZnSnS4 (CZTS)—a non-toxic and low-cost photovoltaic material—has always faced severe charge recombination and poor carrier transport, resulting in its cell efficiency record stagnating at around 11% for years. The implementation of gradient bandgaps is a promising approach to relieving these issues, but it has not been effectively realized in kesterite solar cells due to challenges around controlling the elemental distribution. Here, based on Cd-alloyed CZTS, we propose a pre-crystallization strategy to reduce the intense vertical mass transport and Cd rapid diffusion in the film growth process, thereby realizing a Cd-gradient CZTS absorber. This absorber, exhibiting a downward-bent conduction band structure, effectively enhances the bulk carrier transport and additionally improves the interface properties of the CZTS/CdS heterojunction. These benefits significantly enhance the photoelectric conversion performance of the cell and help in achieving a certified total-area cell efficiency of about 13.2% with obviously reduced voltage loss, realizing a substantial step forward for the pure-sulfide kesterite solar cell. The efficiency of pure-sulfide kesterite solar cells is limited by charge carrier recombination and transport. Yin, Wang, Lou, Meng et al. create a gradient of cadmium across the kesterite layer that improves charge transport and suppresses defects, enabling 13% efficiency.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 2","pages":"205-214"},"PeriodicalIF":49.7,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery 作者更正:基于使用卫星图像的冷却水需求估算,热电厂用水量显著减少的全球情景
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2024-12-20 DOI: 10.1038/s41560-024-01700-w
Alena Lohrmann, Javier Farfan, Upeksha Caldera, Christoph Lohrmann, Christian Breyer
{"title":"Author Correction: Global scenarios for significant water use reduction in thermal power plants based on cooling water demand estimation using satellite imagery","authors":"Alena Lohrmann, Javier Farfan, Upeksha Caldera, Christoph Lohrmann, Christian Breyer","doi":"10.1038/s41560-024-01700-w","DOIUrl":"10.1038/s41560-024-01700-w","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 3","pages":"417-417"},"PeriodicalIF":49.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-024-01700-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142866983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fifty years of change in the energy sector 能源领域五十年的变革
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2024-12-17 DOI: 10.1038/s41560-024-01690-9
Giulia Tregnago
{"title":"Fifty years of change in the energy sector","authors":"Giulia Tregnago","doi":"10.1038/s41560-024-01690-9","DOIUrl":"10.1038/s41560-024-01690-9","url":null,"abstract":"The International Energy Agency (IEA) is an intergovernmental organization that provides analysis, data, and policy recommendations on the energy sector. This year marks the 50th anniversary of its establishment. Laura Cozzi — IEA’s Director of Sustainability, Technology and Outlooks — talks to Nature Energy about progress so far and the challenges ahead.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 1","pages":"3-5"},"PeriodicalIF":49.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale estimation of the potential of battery power for maritime transport in the USA 美国海上运输中电池动力潜力的大规模估计
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2024-12-16 DOI: 10.1038/s41560-024-01687-4
{"title":"Large-scale estimation of the potential of battery power for maritime transport in the USA","authors":"","doi":"10.1038/s41560-024-01687-4","DOIUrl":"10.1038/s41560-024-01687-4","url":null,"abstract":"Maritime transportation is often considered a ‘hard to abate’ sector, meaning it is difficult to reduce its greenhouse gas emissions. Using high-resolution data on ship activity, a techno-economic analysis indicates that electrifying US domestic ships of lower than 1,000 gross tonnage to reduce emissions could become cost effective, if a small percentage of long trips are excluded.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 1","pages":"21-22"},"PeriodicalIF":49.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing perovskite and organic photovoltaics 推进钙钛矿和有机光伏
IF 49.7 1区 材料科学
Nature Energy Pub Date : 2024-12-12 DOI: 10.1038/s41560-024-01686-5
Giulia Tregnago
{"title":"Advancing perovskite and organic photovoltaics","authors":"Giulia Tregnago","doi":"10.1038/s41560-024-01686-5","DOIUrl":"10.1038/s41560-024-01686-5","url":null,"abstract":"Academic and industrial researchers have gathered in Nanjing to discuss recent progress in perovskite and organic solar cells and to identify research gaps that need to be addressed to advance the maturity of these technologies.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 1","pages":"17-18"},"PeriodicalIF":49.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信