Upscaling high-areal-capacity battery electrodes

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Jung-Hui Kim, Nag-Young Kim, Zhengyu Ju, Young-Kuk Hong, Kyu-Dong Kang, Jung-Hyun Pang, Seok-Ju Lee, Seong-Seok Chae, Moon-Soo Park, Je-Young Kim, Guihua Yu, Sang-Young Lee
{"title":"Upscaling high-areal-capacity battery electrodes","authors":"Jung-Hui Kim, Nag-Young Kim, Zhengyu Ju, Young-Kuk Hong, Kyu-Dong Kang, Jung-Hyun Pang, Seok-Ju Lee, Seong-Seok Chae, Moon-Soo Park, Je-Young Kim, Guihua Yu, Sang-Young Lee","doi":"10.1038/s41560-025-01720-0","DOIUrl":null,"url":null,"abstract":"<p>Moving battery technology from the laboratory to large-scale production is a necessary step in achieving cost competitiveness for high-energy-density batteries. So far, academic research has focused on the active material of the electrode and little attention has been paid to cell-level design, hindering the realization of this goal. Therefore, upscaling high-areal-capacity electrode sheets is proposed as a practical way forward. Here we evaluate the impact of high-areal-capacity electrodes on cell energy densities, energy consumption during electrode fabrication and the cost efficiency of cell production. By examining the integration of scalable roll-to-roll electrode-manufacturing techniques (such as slurry casting and dry coating) with the materials chemistry of the electrode components, electrode structure design and cell performance, we aim to outline the areas of development for high-areal-capacity electrodes and provide a structured pathway for bridging the gap between laboratory innovations and industrial scale-up.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"5 1","pages":""},"PeriodicalIF":49.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01720-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Moving battery technology from the laboratory to large-scale production is a necessary step in achieving cost competitiveness for high-energy-density batteries. So far, academic research has focused on the active material of the electrode and little attention has been paid to cell-level design, hindering the realization of this goal. Therefore, upscaling high-areal-capacity electrode sheets is proposed as a practical way forward. Here we evaluate the impact of high-areal-capacity electrodes on cell energy densities, energy consumption during electrode fabrication and the cost efficiency of cell production. By examining the integration of scalable roll-to-roll electrode-manufacturing techniques (such as slurry casting and dry coating) with the materials chemistry of the electrode components, electrode structure design and cell performance, we aim to outline the areas of development for high-areal-capacity electrodes and provide a structured pathway for bridging the gap between laboratory innovations and industrial scale-up.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信