{"title":"Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol","authors":"Chao Zhan, Federico Dattila, Clara Rettenmaier, Antonia Herzog, Matias Herran, Timon Wagner, Fabian Scholten, Arno Bergmann, Núria López, Beatriz Roldan Cuenya","doi":"10.1038/s41560-024-01633-4","DOIUrl":"https://doi.org/10.1038/s41560-024-01633-4","url":null,"abstract":"<p>Electrochemical reduction of CO<sub>2</sub> (CO<sub>2</sub>RR) to multi-carbon products is a promising technology to store intermittent renewable electricity into high-added-value chemicals and close the carbon cycle. Its industrial scalability requires electrocatalysts to be highly selective to certain products, such as ethylene or ethanol. However, a substantial knowledge gap prevents the design of tailor-made materials, as the properties ruling the catalyst selectivity remain elusive. Here we combined in situ surface-enhanced Raman spectroscopy and density functional theory on Cu electrocatalysts to unveil the reaction scheme for CO<sub>2</sub>RR to C<sub>2+</sub> products. Ethylene generation occurs when *OC–CO(H) dimers form via CO coupling on undercoordinated Cu sites. The ethanol route opens up only in the presence of highly compressed and distorted Cu domains with deep <i>s</i>-band states via the crucial intermediate *OCHCH<sub>2</sub>. By identifying and tracking the critical intermediates and specific active sites, our work provides guidelines to selectively decouple ethylene and ethanol production on rationally designed catalysts.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-09-03DOI: 10.1038/s41560-024-01628-1
Timo Boehler, Dominic Bresser
{"title":"Preserving order by controlled disorder","authors":"Timo Boehler, Dominic Bresser","doi":"10.1038/s41560-024-01628-1","DOIUrl":"10.1038/s41560-024-01628-1","url":null,"abstract":"Nickel-rich lithium-ion cathode materials face severe structural and interfacial instabilities when cycled at high potentials and high degrees of delithiation. Now, a LiNi0.8Mn0.1Co0.1O2 material with a complementary composition and structure gradient, composed of an ordered, layered Co-poor bulk phase and a Co-enriched disordered rock-salt surface layer, is shown to efficiently address the issues.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-08-26DOI: 10.1038/s41560-024-01583-x
Jin Suntivich, Geoffroy Hautier, Ismaila Dabo, Ethan J. Crumlin, Dhananjay Kumar, Tanja Cuk
{"title":"Probing intermediate configurations of oxygen evolution catalysis across the light spectrum","authors":"Jin Suntivich, Geoffroy Hautier, Ismaila Dabo, Ethan J. Crumlin, Dhananjay Kumar, Tanja Cuk","doi":"10.1038/s41560-024-01583-x","DOIUrl":"10.1038/s41560-024-01583-x","url":null,"abstract":"The oxygen evolution reaction is crucial to sustainable electro- and photo-electrochemical approaches to chemical energy production (for example, H2). Although mechanistic descriptions of the oxygen evolution reaction have been proposed, the frontier challenge is to extract the molecular details of its elementary steps. Here we discuss how advances in spectroscopy and theory are allowing for configurations of reaction intermediates to be elucidated, distinguishing between experimental approaches (static and dynamic) across a range of surface oxygen binding energies on catalysts (from ruthenium to titanium oxides). We outline how interpreting X-ray and optical spectra relies on established and newly implemented computational techniques. A key emphasis is on detecting adsorbed oxygen intermediates at the oxide/water interface by their chemical composition, electronic and vibrational levels and ion–electron kinetic pathways. Integrating the computational advances with the experimental spectra along these lines could ultimately resolve the elementary steps, elucidating how each intermediate leads to another during oxygen evolution reaction. Oxygen evolution is a critical reaction in the context of renewable fuel production via (photo)electrochemical approaches, yet our understanding of the molecular details of the reaction is limited. Here, the authors explore how specific spectroscopic probes and theory can be combined to reveal the elementary reaction steps.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-08-26DOI: 10.1038/s41560-024-01616-5
Feixiang Ding, Pengxiang Ji, Zhen Han, Xueyan Hou, Yang Yang, Zilin Hu, Yaoshen Niu, Yuan Liu, Jiao Zhang, Xiaohui Rong, Yaxiang Lu, Huican Mao, Dong Su, Liquan Chen, Yong-Sheng Hu
{"title":"Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials","authors":"Feixiang Ding, Pengxiang Ji, Zhen Han, Xueyan Hou, Yang Yang, Zilin Hu, Yaoshen Niu, Yuan Liu, Jiao Zhang, Xiaohui Rong, Yaxiang Lu, Huican Mao, Dong Su, Liquan Chen, Yong-Sheng Hu","doi":"10.1038/s41560-024-01616-5","DOIUrl":"https://doi.org/10.1038/s41560-024-01616-5","url":null,"abstract":"<p>High-entropy oxides have expanded the potential for high-performance Na-ion battery cathodes due to their vast compositional space and entropy-driven stabilization. However, a rational design approach for optimizing their composition is still lacking. Here, we develop an O3-type oxide cathode composed of all-3<i>d</i> transition metals, NaNi<sub>0.3</sub>Cu<sub>0.1</sub>Fe<sub>0.2</sub>Mn<sub>0.3</sub>Ti<sub>0.1</sub>O<sub>2</sub> (NCFMT), which exhibits improved reversible specific capacity and exceptional cycling stability. Replacing Ti<sup>4+</sup> with Sn<sup>4+</sup> ions (NaNi<sub>0.3</sub>Cu<sub>0.1</sub>Fe<sub>0.2</sub>Mn<sub>0.3</sub>Sn<sub>0.1</sub>O<sub>2</sub>; NCFMS) results in poor structural reversibility and diminished cycling stability. Our investigations suggest that the structural integrity of the layered cathode is affected by the compatibility of constituent elements within the transition metal layers (TMO<sub>2</sub>). In NCFMS, planar strain induced by metal-ion displacement triggers elemental segregation and crack formation during repeated cycling. In contrast, NCFMT demonstrates a robust structural framework for stable Na<sup>+</sup> storage due to its high mechanochemical compatibility among constituent elements. This understanding provides insights for designing outstanding layered high-entropy cathode materials.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-08-23DOI: 10.1038/s41560-024-01626-3
Giulia Tregnago
{"title":"Improvements at the junction","authors":"Giulia Tregnago","doi":"10.1038/s41560-024-01626-3","DOIUrl":"10.1038/s41560-024-01626-3","url":null,"abstract":"","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142045339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-08-23DOI: 10.1038/s41560-024-01617-4
Dominic P. Parker, Sarah Johnston, Bryan Leonard, Daniel Stewart, Justin B. Winikoff
{"title":"Economic potential of wind and solar in American Indian communities","authors":"Dominic P. Parker, Sarah Johnston, Bryan Leonard, Daniel Stewart, Justin B. Winikoff","doi":"10.1038/s41560-024-01617-4","DOIUrl":"https://doi.org/10.1038/s41560-024-01617-4","url":null,"abstract":"<p>Could renewable energy development on American Indian Reservations alleviate poverty? This Article combines data on wind and solar endowments, reservation characteristics and utility-scale renewable energy projects to offer three insights. First, the colonial process of reservation creation that intentionally deprived tribes of other natural resources unintentionally left them with favourable wind and solar, especially on reservations with the lowest-income populations. Second, despite favourable endowments, renewable projects are rare: reservation lands are 46% less likely to host wind farms and 110% less likely to host solar than comparable adjacent lands. Third, if this disparity persists, tribes may forgo over US$19 billion in lease and tax earnings that could be accrued under forecasts of renewable energy demand through 2050. We highlight barriers—such as regulatory complexity and uncertainty—that help explain this disparity and emphasize this is not a call to impose federal energy priorities on unwilling tribes.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature EnergyPub Date : 2024-08-23DOI: 10.1038/s41560-024-01615-6
Yimeng Huang, Yanhao Dong, Yang Yang, Tongchao Liu, Moonsu Yoon, Sipei Li, Baoming Wang, Ethan Yupeng Zheng, Jinhyuk Lee, Yongwen Sun, Ying Han, Jim Ciston, Colin Ophus, Chengyu Song, Aubrey Penn, Yaqi Liao, Haijin Ji, Ting Shi, Mengyi Liao, Zexiao Cheng, Jingwei Xiang, Yu Peng, Lu Ma, Xianghui Xiao, Wang Hay Kan, Huaican Chen, Wen Yin, Lingling Guo, Wei-Ren Liu, Rasu Muruganantham, Chun-Chuen Yang, Yuntong Zhu, Qingjie Li, Ju Li
{"title":"Integrated rocksalt–polyanion cathodes with excess lithium and stabilized cycling","authors":"Yimeng Huang, Yanhao Dong, Yang Yang, Tongchao Liu, Moonsu Yoon, Sipei Li, Baoming Wang, Ethan Yupeng Zheng, Jinhyuk Lee, Yongwen Sun, Ying Han, Jim Ciston, Colin Ophus, Chengyu Song, Aubrey Penn, Yaqi Liao, Haijin Ji, Ting Shi, Mengyi Liao, Zexiao Cheng, Jingwei Xiang, Yu Peng, Lu Ma, Xianghui Xiao, Wang Hay Kan, Huaican Chen, Wen Yin, Lingling Guo, Wei-Ren Liu, Rasu Muruganantham, Chun-Chuen Yang, Yuntong Zhu, Qingjie Li, Ju Li","doi":"10.1038/s41560-024-01615-6","DOIUrl":"https://doi.org/10.1038/s41560-024-01615-6","url":null,"abstract":"<p>Co- and Ni-free disordered rocksalt cathodes utilize oxygen redox to increase the energy density of lithium-ion batteries, but it is challenging to achieve good cycle life at high voltages >4.5 V (versus Li/Li<sup>+</sup>). Here we report a family of Li-excess Mn-rich cathodes that integrates rocksalt- and polyanion-type structures. Following design rules for cation filling and ordering, we demonstrate the bulk incorporation of polyanion groups into the rocksalt lattice. This integration bridges the two primary families of lithium-ion battery cathodes—layered/spinel and phosphate oxides—dramatically enhancing the cycling stability of disordered rocksalt cathodes with 4.8 V upper cut-off voltage. The cathode exhibits high gravimetric energy densities above 1,100 Wh kg<sup>−1</sup> and >70% retention over 100 cycles. This study opens up a broad compositional space for developing battery cathodes using earth-abundant elements such as Mn and Fe.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":56.7,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oscillatory solvation chemistry for a 500 Wh kg−1 Li-metal pouch cell","authors":"Shuoqing Zhang, Ruhong Li, Tao Deng, Qiang Ma, Xiang Hong, Hao Zhang, Ruixin Zhang, Shouhong Ding, Yongjian Wu, Haotian Zhu, Menglu Li, Haikuo Zhang, Di Lu, Baochen Ma, Ling Lv, Yong Li, Lixin Chen, Yanbin Shen, Rui Guo, Xiulin Fan","doi":"10.1038/s41560-024-01621-8","DOIUrl":"10.1038/s41560-024-01621-8","url":null,"abstract":"Cation solvation is well understood in the bulk solution phase, but knowledge is limited regarding the electrode–electrolyte interface. The process by which cation solvation conforms to the interfacial field to form interphases remains unclear. Here we examine the synergistic effects of external and intramolecular fields on accommodating Li+ solvates to the Li-metal anode, leading to dielectric-mediated transfer dynamics on the interface. At charged interfaces, cation–anion pairs arrange in a periodic oscillatory distribution. A low-oscillation amplitude exacerbates the electrolyte decomposition and increases surface impedance. We propose a dielectric protocol that maintains cation–anion coordination with a high oscillation amplitude at the interfaces, addressing these issues. Accordingly, we demonstrate a Li-metal pouch cell with an energy density of 500 Wh kg−1 at the Ah level using an ultra-lean electrolyte (1 g Ah−1). Our study offers insights into solid/liquid interfaces that are crucial in advancing battery technologies. Cation solvation in batteries is well understood in bulk solutions but less so at electrode/electrolyte interfaces. This study reveals how external and intramolecular fields affect Li-ion solvation, proposing a dielectric protocol to enhance cation–anion coordination and improve performance in Li-metal pouch cells.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":null,"pages":null},"PeriodicalIF":49.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142022035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}