Photocatalytic oxidative coupling of methane to C3+ hydrocarbons via nanopore-confined microenvironments

IF 60.1 1区 材料科学 Q1 ENERGY & FUELS
Wenfeng Nie, Liwei Chen, Yuchen Hao, Xiangjie Ge, Haodong Liu, Jiani Li, Jialin Wang, Zhao Wang, Hui-Zi Huang, Chao Sun, Cuncai Lv, Shangbo Ning, Linjie Gao, Yaguang Li, Shufang Wang, Bo Wang, Jinhua Ye
{"title":"Photocatalytic oxidative coupling of methane to C3+ hydrocarbons via nanopore-confined microenvironments","authors":"Wenfeng Nie, Liwei Chen, Yuchen Hao, Xiangjie Ge, Haodong Liu, Jiani Li, Jialin Wang, Zhao Wang, Hui-Zi Huang, Chao Sun, Cuncai Lv, Shangbo Ning, Linjie Gao, Yaguang Li, Shufang Wang, Bo Wang, Jinhua Ye","doi":"10.1038/s41560-025-01834-5","DOIUrl":null,"url":null,"abstract":"Photocatalytic oxidative coupling of methane (POCM) enables the production of value-added fuels and chemicals using renewable solar energy. Unfortunately, despite recent advances in the production of C2 chemicals (for example, ethane), POCM systems that selectively produce industrially useful and transportable C3+ hydrocarbons remain elusive. Here we report that Au-embedded porous TiO2, activated by steam during the POCM process, enables efficient and selective flow synthesis of propane with a productivity of 1.4 mmol h−1. At this productivity, we achieve a high propane selectivity of 91.3% and an apparent quantum efficiency of 39.7% at a wavelength of 365 nm. Mechanistic studies reveal that the tensile-strained Au and the nanopore-confined catalytic microenvironment jointly stabilize key ethane intermediates, boosting deeper C2–C1 coupling to form propane. Meanwhile, the steam-activated surface lattice oxygen on TiO2 accelerates hydrogen species transfer, thus enhancing POCM kinetics. This approach is economically feasible for practical application under concentrated solar light. Methane can be converted into other useful chemicals and fuels via photocatalytic oxidative coupling, yet producing molecules with more than two carbon atoms remains difficult. Here the authors show that highly strained Au confined within the nanopores of TiO2 can convert methane to propane with high selectivity.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"10 9","pages":"1095-1106"},"PeriodicalIF":60.1000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-025-01834-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic oxidative coupling of methane (POCM) enables the production of value-added fuels and chemicals using renewable solar energy. Unfortunately, despite recent advances in the production of C2 chemicals (for example, ethane), POCM systems that selectively produce industrially useful and transportable C3+ hydrocarbons remain elusive. Here we report that Au-embedded porous TiO2, activated by steam during the POCM process, enables efficient and selective flow synthesis of propane with a productivity of 1.4 mmol h−1. At this productivity, we achieve a high propane selectivity of 91.3% and an apparent quantum efficiency of 39.7% at a wavelength of 365 nm. Mechanistic studies reveal that the tensile-strained Au and the nanopore-confined catalytic microenvironment jointly stabilize key ethane intermediates, boosting deeper C2–C1 coupling to form propane. Meanwhile, the steam-activated surface lattice oxygen on TiO2 accelerates hydrogen species transfer, thus enhancing POCM kinetics. This approach is economically feasible for practical application under concentrated solar light. Methane can be converted into other useful chemicals and fuels via photocatalytic oxidative coupling, yet producing molecules with more than two carbon atoms remains difficult. Here the authors show that highly strained Au confined within the nanopores of TiO2 can convert methane to propane with high selectivity.

Abstract Image

纳米孔限制微环境下甲烷与C3+碳氢化合物的光催化氧化偶联
甲烷的光催化氧化偶联(POCM)使使用可再生太阳能生产增值燃料和化学品成为可能。不幸的是,尽管最近在C2化学品(例如乙烷)的生产方面取得了进展,但POCM系统选择性地生产工业上有用的和可运输的C3+碳氢化合物仍然难以实现。本文报道了在POCM过程中,通过蒸汽活化au包埋的多孔TiO2,实现了丙烷的高效、选择性流动合成,产率为1.4 mmol h−1。在这种效率下,我们在365 nm波长下实现了91.3%的丙烷选择性和39.7%的表观量子效率。机理研究表明,拉伸应变的Au和纳米孔限制的催化微环境共同稳定了关键的乙烷中间体,促进了C2-C1更深的偶联形成丙烷。同时,TiO2上蒸汽活化的表面晶格氧加速了氢的转移,从而增强了POCM动力学。该方法在聚光条件下具有经济可行性。甲烷可以通过光催化氧化偶联转化为其他有用的化学物质和燃料,但生产两个以上碳原子的分子仍然很困难。在这里,作者表明,高度应变的Au限制在TiO2的纳米孔内,可以高选择性地将甲烷转化为丙烷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信