{"title":"The commercialization of graphene electronics","authors":"Kari Hjelt, Henning Döscher","doi":"10.1038/s41928-024-01270-5","DOIUrl":"10.1038/s41928-024-01270-5","url":null,"abstract":"Technologies based on graphene and other two-dimensional materials are being commercialized in a number of areas, including electronics. But, as work on the Graphene Flagship illustrates, challenges in the scale-up and industrialization of graphene remain to be solved.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"844-846"},"PeriodicalIF":33.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142440262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fuzzy logic with two-dimensional interfacial junction transistors","authors":"Langlang Xu, Xinyu Huang, Lei Ye","doi":"10.1038/s41928-024-01259-0","DOIUrl":"10.1038/s41928-024-01259-0","url":null,"abstract":"An interfacial junction transistor that is made from molybdenum disulfide and graphene, and offers tunable output characteristics, can be used to create reconfigurable fuzzy logic hardware for edge computing.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"850-851"},"PeriodicalIF":33.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hefei Liu, Jiangbin Wu, Jiahui Ma, Xiaodong Yan, Ning Yang, Xu He, Yangu He, Hongming Zhang, Ting-Hao Hsu, Justin H. Qian, Jing Guo, Mark C. Hersam, Han Wang
{"title":"A van der Waals interfacial junction transistor for reconfigurable fuzzy logic hardware","authors":"Hefei Liu, Jiangbin Wu, Jiahui Ma, Xiaodong Yan, Ning Yang, Xu He, Yangu He, Hongming Zhang, Ting-Hao Hsu, Justin H. Qian, Jing Guo, Mark C. Hersam, Han Wang","doi":"10.1038/s41928-024-01256-3","DOIUrl":"10.1038/s41928-024-01256-3","url":null,"abstract":"Edge devices face challenges when implementing deep neural networks due to constraints on their computational resources and power consumption. Fuzzy logic systems can potentially provide more efficient edge implementations due to their compactness and capacity to manage uncertain data. However, their hardware realization remains difficult, primarily because implementing reconfigurable membership function generators using conventional technologies requires high circuit complexity and power consumption. Here we report a multigate van der Waals interfacial junction transistor based on a molybdenum disulfide/graphene heterostructure that can generate tunable Gaussian-like and π-shaped membership functions. By integrating these generators with peripheral circuits, we create a reconfigurable fuzzy controller hardware capable of nonlinear system control. This fuzzy logic system can also be integrated with a few-layer convolution neural network to form a fuzzy neural network with enhanced performance in image segmentation. An interfacial junction transistor based on a molybdenum disulfide/graphene heterostructure can generate tunable π-shaped and Gaussian-like membership functions, allowing membership function generators for fuzzy logic systems to be implemented with low device count and energy cost.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"876-884"},"PeriodicalIF":33.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subir Ghosh, Yikai Zheng, Zhiyu Zhang, Yongwen Sun, Thomas F. Schranghamer, Najam U Sakib, Aaryan Oberoi, Chen Chen, Joan M. Redwing, Yang Yang, Saptarshi Das
{"title":"Monolithic and heterogeneous three-dimensional integration of two-dimensional materials with high-density vias","authors":"Subir Ghosh, Yikai Zheng, Zhiyu Zhang, Yongwen Sun, Thomas F. Schranghamer, Najam U Sakib, Aaryan Oberoi, Chen Chen, Joan M. Redwing, Yang Yang, Saptarshi Das","doi":"10.1038/s41928-024-01251-8","DOIUrl":"10.1038/s41928-024-01251-8","url":null,"abstract":"Monolithic three-dimensional (M3D) integration is being increasingly adopted by the semiconductor industry as an alternative to traditional through-silicon via technology as a way to increase the density of stacked, heterogenous electronic components. M3D integration can also provide transistor-level partitioning and material heterogeneity. However, there are few large-area demonstrations of M3D integration using non-silicon materials. Here, we report heterogeneous M3D integration of two-dimensional materials using a dense inter-via structure with an interconnect (I/O) density of 62,500 I/O per mm2. Our M3D stack consists of graphene-based chemisensors in tier 2 and molybdenum disulfide (MoS2) memtransistor-based programmable circuits in tier 1, with more than 500 devices in each tier. Our process allows the physical proximity between sensors and computing elements to be reduced to 50 nm, providing reduced latency in near-sensor computing applications. Our manufacturing process also stays below 200 °C and is thus compatible with back-end-of-line integration. Tiers containing graphene-based sensors and molybdenum disulfide-based processors can be vertically stacked using a monolithic integration process, with an interconnect density of 62,500 per mm2.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"892-903"},"PeriodicalIF":33.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monolithic 3D integration with 2D materials","authors":"Sangmoon Han, Ji-Yun Moon, Sang-Hoon Bae","doi":"10.1038/s41928-024-01260-7","DOIUrl":"10.1038/s41928-024-01260-7","url":null,"abstract":"The monolithic 3D integration of 2D molybdenum disulfide memtransistors and graphene chemitransistors can be used to create near-sensor computing chips with high interconnect density and a vertical separation between tiers of less than 50 nm.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"854-855"},"PeriodicalIF":33.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142385085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A wearable in-sensor computing platform based on stretchable organic electrochemical transistors","authors":"Dingyao Liu, Xinyu Tian, Jing Bai, Shaocong Wang, Shilei Dai, Yan Wang, Zhongrui Wang, Shiming Zhang","doi":"10.1038/s41928-024-01250-9","DOIUrl":"10.1038/s41928-024-01250-9","url":null,"abstract":"Organic electrochemical transistors could be used in in-sensor computing and wearable healthcare applications. However, they lack the conformity and stretchability needed to minimize mechanical mismatch between the devices and human body, are challenging to fabricate at a scale with small feature sizes and high density, and require miniaturized readout systems for practical on-body applications. Here we report a wearable in-sensor computing platform based on stretchable organic electrochemical transistor arrays. The platform offers more than 50% stretchability by using an adhesive supramolecular buffer layer during fabrication that improves robustness at interfaces under strain. We fabricate stretchable transistor arrays with feature sizes down to 100 μm using a high-resolution six-channel inkjet printing system. We also develop a coin-sized data readout system for biosignal acquisition. We show that our coin-sized, smartwatch-compatible electronic module can provide wearable in-sensor edge computing. Using an adhesive buffer layer and a high-resolution six-channel inkjet printing system, arrays of stretchable organic electrochemical transistors can be fabricated for application in wearable in-sensor computing platforms.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 12","pages":"1176-1185"},"PeriodicalIF":33.7,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How we made the 1,000 V silicon carbide Schottky diode","authors":"Tsunenobu Kimoto","doi":"10.1038/s41928-024-01252-7","DOIUrl":"10.1038/s41928-024-01252-7","url":null,"abstract":"Silicon carbide power devices are an important component in a variety of technologies. Tsunenobu Kimoto recounts how the first 1 kV silicon carbide Schottky diodes were created.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"933-933"},"PeriodicalIF":33.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenqing He, Tianyi Zhang, Yongjian Zhou, Caihua Wan, Hao Wu, Baoshan Cui, Jihao Xia, Ran Zhang, Tengyu Guo, Peng Chen, Mingkun Zhao, Leina Jiang, Alexander Grutter, Purnima P. Balakrishnan, Andrew J. Caruana, Christy J. Kinane, Sean Langridge, Guoqiang Yu, Cheng Song, Xiufeng Han
{"title":"Electrical switching of the perpendicular Néel order in a collinear antiferromagnet","authors":"Wenqing He, Tianyi Zhang, Yongjian Zhou, Caihua Wan, Hao Wu, Baoshan Cui, Jihao Xia, Ran Zhang, Tengyu Guo, Peng Chen, Mingkun Zhao, Leina Jiang, Alexander Grutter, Purnima P. Balakrishnan, Andrew J. Caruana, Christy J. Kinane, Sean Langridge, Guoqiang Yu, Cheng Song, Xiufeng Han","doi":"10.1038/s41928-024-01248-3","DOIUrl":"10.1038/s41928-024-01248-3","url":null,"abstract":"Spintronics is based on the electrical manipulation of magnetic order through current-induced spin torques. In collinear antiferromagnets with perpendicular magnetic anisotropy, binary states can be directly encoded in their opposite Néel order. The negligible stray fields and terahertz spin dynamics of these systems mean that they could potentially be used to develop ultrafast memory devices with high integration density. Here we report electrical switching of the perpendicular Néel order in a collinear antiferromagnet. We show that the Néel order in a prototypical collinear antiferromagnetic insulator—chromium oxide (Cr2O3)—can be switched by the spin–orbit torque with a low current density (5.8 × 106 A cm−2) and read out by the anomalous Hall effect. We also show that the magnetization of a Y3Fe5O12 film exchange-coupled to the Cr2O3 layer can be electrically switched, confirming the Néel order switching of the Cr2O3 layer. The perpendicular Néel order in a collinear antiferromagnetic insulator—chromium oxide—can be switched by 180° via the spin–orbit torque with a low current density of 5.8 × 106 A cm−2 and read out via the anomalous Hall effect.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 11","pages":"975-983"},"PeriodicalIF":33.7,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An update for brain–computer interfaces","authors":"","doi":"10.1038/s41928-024-01257-2","DOIUrl":"10.1038/s41928-024-01257-2","url":null,"abstract":"Advances in sensors, electrodes and probes are helping to expand the capabilities of brain–computer interfaces.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"725-725"},"PeriodicalIF":33.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41928-024-01257-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142317454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}