Sudhanshu Tiwari, Anuj Ashok, Connor Devitt, Sunil A. Bhave, Renyuan Wang
{"title":"High-performance magnetostatic wave resonators based on deep anisotropic etching of gadolinium gallium garnet substrates","authors":"Sudhanshu Tiwari, Anuj Ashok, Connor Devitt, Sunil A. Bhave, Renyuan Wang","doi":"10.1038/s41928-025-01345-x","DOIUrl":"10.1038/s41928-025-01345-x","url":null,"abstract":"Magnetostatic wave resonators based on yttrium iron garnet (YIG) are a promising technology platform for future communication filters. Such devices have demonstrated better quality factors than acoustic resonators in the 7 GHz range and above. However, the coupling coefficients of these resonators have been limited to less than 3%, primarily due to the restricted design space that is a result of microfabrication challenges related to the patterning of gadolinium gallium garnet (GGG), the substrate material used for growing single-crystal YIG. Here we report magnetostatic wave resonators created through the anisotropic etching of GGG substrates. Our approach, which is based on the YIG-on-GGG platform, uses a transducer with a hairclip-like structure. It is created by developing a microfabrication methodology that involves thinning and deep etching (up to 100 μm) of the GGG substrate. The resulting magnetostatic wave resonators exhibit a coupling of more than 8% in the 6–20 GHz frequency range. A microfabrication methodology that involves thinning and deep etching of gadolinium gallium garnet substrates can be used to create magnetostatic wave resonators that exhibit a coupling of more than 8% in the 6–20 GHz frequency range.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 3","pages":"267-275"},"PeriodicalIF":33.7,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41928-025-01345-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143507140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microcomb-synchronized optoelectronics","authors":"Xiangpeng Zhang, Xuguang Zhang, Yujun Chen, Warren Jin, Zixuan Zhou, Chenyu Liu, Chenghao Lao, Jiahui Huang, Jingwen Dong, Weichao Ma, Weiwei Hu, Xingjun Wang, John E. Bowers, Wangzhe Li, Lin Chang","doi":"10.1038/s41928-025-01349-7","DOIUrl":"https://doi.org/10.1038/s41928-025-01349-7","url":null,"abstract":"<p>Optoelectronics could be used to develop fast and wideband information systems. However, the large frequency mismatch between optically synthesized signals and electronic clocks makes it difficult to synchronize optoelectronic systems. We describe an on-chip microcomb that can synthesize single-frequency and wideband signals covering a broad frequency band (from megahertz to hundreds of gigahertz) and that can provide reference clocks for the electronics in the system. Our synchronization strategy, which aligns optically synthesized signals and electronics, can provide signal manipulation precision and data transmission without coherent digital signal processing. To illustrate the capabilities of this approach, we create a wireless joint sensing and communication system based on a shared microcomb-based transmitter.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"2018 1","pages":""},"PeriodicalIF":34.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast magnonic device development with inverse design","authors":"Mingzhong Wu","doi":"10.1038/s41928-025-01347-9","DOIUrl":"10.1038/s41928-025-01347-9","url":null,"abstract":"A reconfigurable magnonic device based on a combination of ferrimagnetic yttrium iron garnet and current loops can be used to implement an inverse design method that involves no simulations.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 2","pages":"102-103"},"PeriodicalIF":33.7,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143485857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In Cheol Kwak, Jihyun Kim, Jung Woo Moon, Seonkwon Kim, Ji Yun Park, Okin Song, Vlastimil Mazánek, Zdeněk Sofer, Hyunwoo Jo, Se Young Park, Moon Sung Kang, Joohoon Kang, Jeong Ho Cho
{"title":"Orthogonal photopatterning of two-dimensional percolated network films for wafer-scale heterostructures","authors":"In Cheol Kwak, Jihyun Kim, Jung Woo Moon, Seonkwon Kim, Ji Yun Park, Okin Song, Vlastimil Mazánek, Zdeněk Sofer, Hyunwoo Jo, Se Young Park, Moon Sung Kang, Joohoon Kang, Jeong Ho Cho","doi":"10.1038/s41928-025-01351-z","DOIUrl":"10.1038/s41928-025-01351-z","url":null,"abstract":"Molecular intercalation-based electrochemical exfoliation of two-dimensional (2D) materials can be used to create van der Waals heterostructures. However, the scalable assembly of vertical heterostructures typically requires the use of various chemical solvents for photolithography and subsequent transfer, which can leave behind chemical residues and limit the patterning resolution. We show that patterned van der Waals heterostructures can be fabricated from electrochemically exfoliated 2D flakes using a photoreactive crosslinker. When a 2D van der Waals percolated network with the crosslinker is exposed to ultraviolet light, the network junctions form covalent bonds, thereby enabling improved charge transport and orthogonal patterning of vertically stacked van der Waals thin-film networks without affecting the underlying prepatterned layers. Our approach can be used to create wafer-scale arrays of photopatterned field-effect transistors based on different 2D materials. The field-effect transistors exhibit high spatial uniformity and can be used to create logic gates, namely NOT, NAND and NOR gates. A photoreactive crosslinker can be used to directly pattern thin films of exfoliated two-dimensional flakes, and the technique can be performed sequentially to create patterned van der Waals heterostructures at wafer scales.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 3","pages":"235-243"},"PeriodicalIF":33.7,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Growing single crystals of molybdenum disulfide at scale","authors":"Katharina Zeissler","doi":"10.1038/s41928-025-01358-6","DOIUrl":"10.1038/s41928-025-01358-6","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 2","pages":"99-99"},"PeriodicalIF":33.7,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhengwu Liu, Jie Mei, Jianshi Tang, Minpeng Xu, Bin Gao, Kun Wang, Sanchuang Ding, Qi Liu, Qi Qin, Weize Chen, Yue Xi, Yijun Li, Peng Yao, Han Zhao, Ngai Wong, He Qian, Bo Hong, Tzyy-Ping Jung, Dong Ming, Huaqiang Wu
{"title":"A memristor-based adaptive neuromorphic decoder for brain–computer interfaces","authors":"Zhengwu Liu, Jie Mei, Jianshi Tang, Minpeng Xu, Bin Gao, Kun Wang, Sanchuang Ding, Qi Liu, Qi Qin, Weize Chen, Yue Xi, Yijun Li, Peng Yao, Han Zhao, Ngai Wong, He Qian, Bo Hong, Tzyy-Ping Jung, Dong Ming, Huaqiang Wu","doi":"10.1038/s41928-025-01340-2","DOIUrl":"https://doi.org/10.1038/s41928-025-01340-2","url":null,"abstract":"<p>Practical brain–computer interfaces should be able to decipher brain signals and dynamically adapt to brain fluctuations. This, however, requires a decoder capable of flexible updates with energy-efficient decoding capabilities. Here we report a neuromorphic and adaptive decoder for brain–computer interfaces, which is based on a 128k-cell memristor chip. Our approach features a hardware-efficient one-step memristor decoding strategy that allows the interface to achieve software-equivalent decoding performance. Furthermore, we show that the system can be used for the real-time control of a drone in four degrees of freedom. We also develop an interactive update framework that allows the memristor decoder and the changing brain signals to adapt to each other. We illustrate the capabilities of this co-evolution of the brain and memristor decoder over an extended interaction task involving ten participants, which leads to around 20% higher accuracy than an interface without co-evolution.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"80 4 1","pages":""},"PeriodicalIF":34.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143427035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Video processing on a self-calibrating analogue memristor array","authors":"Muhammad Umair Khan, Baker Mohammad","doi":"10.1038/s41928-025-01341-1","DOIUrl":"10.1038/s41928-025-01341-1","url":null,"abstract":"A compact analogue hardware platform — based on a reliable 32 × 32 selector-less memristor array — can provide real-time video processing.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"8 2","pages":"104-105"},"PeriodicalIF":33.7,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}