{"title":"Channel and contact length scaling of two-dimensional transistors using composite metal electrodes","authors":"Sifan Chen, Shuiyuan Wang, Zizheng Liu, Tanjun Wang, Yuyan Zhu, Haoqi Wu, Chunsen Liu, Peng Zhou","doi":"10.1038/s41928-025-01382-6","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional semiconductors are a potential channel material for transistors with highly scaled contacted poly pitch (CPP). Total scaling of CPP requires the simultaneous reduction of channel length and contact length. However, the physical width limit of contact metals makes it difficult to form effective small-size contacts. In addition, decreasing the contact length below the transfer length induces a current crowding phenomenon, resulting in an exponential increase in contact resistance and poor device performance. Here we show that composite metal contact electrodes of gold/titanium/nickel can offer shape-preserving effects that allow the extreme scaling of contact length in two-dimensional transistors while maintaining a low contact resistance. We use the approach to create molybdenum disulfide transistors with a CPP of around 60 nm—contact length and channel length scaled to around 30 nm and transfer length scaled to under 30 nm—that exhibit on/off ratios over 10<sup>8</sup>, on-state currents of around 300 μA μm<sup>−1</sup> and off-state currents down to around 1 pA μm<sup>−1</sup>. We also fabricate arrays of all-out scaled two-dimensional transistors that exhibit low variability in key performance metrics and demonstrate their integration into advanced logic circuits.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"38 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-025-01382-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional semiconductors are a potential channel material for transistors with highly scaled contacted poly pitch (CPP). Total scaling of CPP requires the simultaneous reduction of channel length and contact length. However, the physical width limit of contact metals makes it difficult to form effective small-size contacts. In addition, decreasing the contact length below the transfer length induces a current crowding phenomenon, resulting in an exponential increase in contact resistance and poor device performance. Here we show that composite metal contact electrodes of gold/titanium/nickel can offer shape-preserving effects that allow the extreme scaling of contact length in two-dimensional transistors while maintaining a low contact resistance. We use the approach to create molybdenum disulfide transistors with a CPP of around 60 nm—contact length and channel length scaled to around 30 nm and transfer length scaled to under 30 nm—that exhibit on/off ratios over 108, on-state currents of around 300 μA μm−1 and off-state currents down to around 1 pA μm−1. We also fabricate arrays of all-out scaled two-dimensional transistors that exhibit low variability in key performance metrics and demonstrate their integration into advanced logic circuits.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.