Anyuan Gao, Shao-Wen Chen, Barun Ghosh, Jian-Xiang Qiu, Yu-Fei Liu, Yugo Onishi, Chaowei Hu, Tiema Qian, Damien Bérubé, Thao Dinh, Houchen Li, Christian Tzschaschel, Seunghyun Park, Tianye Huang, Shang-Wei Lien, Zhe Sun, Sheng-Chin Ho, Bahadur Singh, Kenji Watanabe, Takashi Taniguchi, David C. Bell, Arun Bansil, Hsin Lin, Tay-Rong Chang, Amir Yacoby, Ni Ni, Liang Fu, Qiong Ma, Su-Yang Xu
{"title":"An antiferromagnetic diode effect in even-layered MnBi2Te4","authors":"Anyuan Gao, Shao-Wen Chen, Barun Ghosh, Jian-Xiang Qiu, Yu-Fei Liu, Yugo Onishi, Chaowei Hu, Tiema Qian, Damien Bérubé, Thao Dinh, Houchen Li, Christian Tzschaschel, Seunghyun Park, Tianye Huang, Shang-Wei Lien, Zhe Sun, Sheng-Chin Ho, Bahadur Singh, Kenji Watanabe, Takashi Taniguchi, David C. Bell, Arun Bansil, Hsin Lin, Tay-Rong Chang, Amir Yacoby, Ni Ni, Liang Fu, Qiong Ma, Su-Yang Xu","doi":"10.1038/s41928-024-01219-8","DOIUrl":"10.1038/s41928-024-01219-8","url":null,"abstract":"In a p–n junction, the separation of positive and negative charges leads to diode transport, in which charge flows in only one direction. Non-centrosymmetric polar conductors are intrinsic diodes that could be of use in the development of nonlinear applications. Such systems have recently been extended to non-centrosymmetric superconductors, and the superconducting diode effect has been observed. Here, we report an antiferromagnetic diode effect in a centrosymmetric crystal without directional charge separation. We observed large second-harmonic transport in a nonlinear electronic device enabled by the compensated antiferromagnetic state of even-layered MnBi2Te4. We show that this antiferromagnetic diode effect can be used to create in-plane field-effect transistors and microwave-energy-harvesting devices. We also show that electrical sum-frequency generation can be used as a tool to detect nonlinear responses in quantum materials. An antiferromagnetic diode effect was observed in a centrosymmetric crystal without directional charge separation. This effect could be used to create in-plane field-effect transistors and microwave-energy-harvesting devices.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A scalable integration process for ultrafast two-dimensional flash memory","authors":"Yongbo Jiang, Chunsen Liu, Zhenyuan Cao, Chuhang Li, Zizheng Liu, Chong Wang, Yutong Xiang, Peng Zhou","doi":"10.1038/s41928-024-01229-6","DOIUrl":"10.1038/s41928-024-01229-6","url":null,"abstract":"Data-driven computing is highly dependent on memory performance. Flash memory is presently the dominant non-volatile memory technology but suffers from limitations in terms of speed. Two-dimensional (2D) materials could potentially be used to create ultrafast flash memory. However, due to interface engineering problems, ultrafast non-volatile performance is presently restricted to exfoliated 2D materials, and there is a lack of performance demonstrations with short-channel devices. Here, we report a scalable integration process for ultrafast 2D flash memory that can be used to integrate 1,024 flash-memory devices with a yield of over 98%. We illustrate the approach with two different tunnelling barrier configurations of the memory stack (HfO2/Pt/HfO2 and Al2O3/Pt/Al2O3) and using transferred chemical vapour deposition-grown monolayer molybdenum disulfide. We also show that the channel length of the ultrafast flash memory can be scaled down to sub-10 nm, which is below the physical limit of silicon flash memory. Our sub-10 nm devices offer non-volatile information storage (up to 4 bits) and robust endurance (over 105). A scalable integration process for ultrafast two-dimensional flash memory can be used to integrate 1,024 devices with a yield of over 98%. The channel length of the devices could also be scaled down to sub-10 nm.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Free-standing printed electronics with direct ink writing","authors":"Yang Yang","doi":"10.1038/s41928-024-01230-z","DOIUrl":"10.1038/s41928-024-01230-z","url":null,"abstract":"A direct ink-writing technique that relies on tension in the nozzle can be used to print free-standing metal structures with aspect ratios of up to 750:1.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang
{"title":"A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing","authors":"Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang","doi":"10.1038/s41928-024-01216-x","DOIUrl":"10.1038/s41928-024-01216-x","url":null,"abstract":"High-density, large-area electronic interfaces are a key component of brain–computer interface technologies. However, current designs typically require patients to undergo invasive procedures, which can lead to various complications. Here, we report a biodegradable and self-deployable tent electrode for brain cortex interfacing. The system can be integrated with multiplexing arrays and a wireless module for near-field communication and data transfer. It can be programmably packaged and self-deployed using a syringe for minimally invasive delivery through a small hole. Following delivery, it can expand to cover an area around 200 times its initial size. The electrode also naturally decomposes within the body after use, minimizing the impact of subsequent removal surgery. Through in vivo demonstrations, we show that our cortical-interfacing platform can be used to stimulate large populations of cortical activities. A biodegradable electronic tent electrode array that can be inserted into the brain cortex using a syringe, where it then expands to 200 times its original size, can be used for electrocorticography monitoring.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-sensor visual adaptation across the spectrum","authors":"Fang Wang, Jin Wang, Runzhang Xie, Weida Hu","doi":"10.1038/s41928-024-01217-w","DOIUrl":"10.1038/s41928-024-01217-w","url":null,"abstract":"Perception of spectrally distinctive features can be achieved using arrays of back-to-back photodiodes that have a spectral response that can be electrically tuned.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Apostolidis, B. J. Villis, J. F. Chittock-Wood, J. M. Powell, A. Baumgartner, V. Vesterinen, S. Simbierowicz, J. Hassel, M. R. Buitelaar
{"title":"Quantum paraelectric varactors for radiofrequency measurements at millikelvin temperatures","authors":"P. Apostolidis, B. J. Villis, J. F. Chittock-Wood, J. M. Powell, A. Baumgartner, V. Vesterinen, S. Simbierowicz, J. Hassel, M. R. Buitelaar","doi":"10.1038/s41928-024-01214-z","DOIUrl":"10.1038/s41928-024-01214-z","url":null,"abstract":"Radiofrequency reflectometry can provide fast and sensitive electrical read-out of charge and spin qubits in quantum dot devices coupled to resonant circuits. In situ frequency tuning and impedance matching of the resonator circuit using voltage-tunable capacitors (varactors) is needed to optimize read-out sensitivity, but the performance of conventional semiconductor- and ferroelectric-based varactors degrades substantially in the millikelvin temperature range relevant for solid-state quantum devices. Here we show that strontium titanate and potassium tantalate, materials which can exhibit quantum paraelectric behaviour with large field-tunable permittivity at low temperatures, can be used to make varactors with perfect impedance matching and resonator frequency tuning at 6 mK. We characterize the varactors at 6 mK in terms of their capacitance tunability, dissipative losses and magnetic field insensitivity. We use the quantum paraelectric varactors to optimize the radiofrequency read-out of carbon nanotube quantum dot devices, achieving a charge sensitivity of 4.8 μe Hz−1/2 and a capacitance sensitivity of 0.04 aF Hz−1/2. Using materials that show quantum paraelectricity, a phenomenon in which ferroelectric order is suppressed at very low temperature, voltage-tunable capacitors can be created for use in sensitive read-out circuits to measure cryogenic quantum devices.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41928-024-01214-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensitive spin-rectifier-based rectenna and on-chip array for wireless energy harvesting","authors":"","doi":"10.1038/s41928-024-01218-9","DOIUrl":"10.1038/s41928-024-01218-9","url":null,"abstract":"Designing a rectifier for harvesting low ambient radiofrequency energy and converting it into useful d.c. power is challenging. Now, a spin-rectifier-based rectenna and a spin-rectifier array with on-chip coplanar waveguides are designed for harvesting ambient radiofrequency signals with good sensitivity and efficiency.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Wang, Soumya Sarkar, Han Yan, Manish Chhowalla
{"title":"Critical challenges in the development of electronics based on two-dimensional transition metal dichalcogenides","authors":"Yan Wang, Soumya Sarkar, Han Yan, Manish Chhowalla","doi":"10.1038/s41928-024-01210-3","DOIUrl":"10.1038/s41928-024-01210-3","url":null,"abstract":"The development of high-performance electronic devices based on two-dimensional (2D) transition metal dichalcogenide semiconductors has recently advanced from one-off proof-of-principle demonstrations to more reproducible integrated devices. It has, in particular, reached a point where the material quality—as well as the interfaces between the metal contacts, dielectrics and 2D semiconductors—must be optimized to increase device performance. Here we examine the key immediate challenges for the development of electronics based on 2D transition metal dichalcogenides, and identify doping, p-type contacts and high-dielectric-constant dielectrics as critical issues. We argue that these challenges stem from the high density of defects present in 2D transition metal dichalcogenides, and suggest that the community focus more on the growth of high-quality materials with a low concentration of defects. We also provide recommendations on identifying industry-compatible dielectrics for these 2D devices. This Perspective explores key challenges in the development of electronics based on two-dimensional transition metal dichalcogenides, identifying defects, doping, p-type contacts and high-dielectric-constant dielectrics as critical issues.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emerging reporting standards","authors":"","doi":"10.1038/s41928-024-01220-1","DOIUrl":"10.1038/s41928-024-01220-1","url":null,"abstract":"Steps are required to improve the assessment, reporting and benchmarking of devices based on emerging semiconductor materials.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41928-024-01220-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141791126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanbo Guo, Zheyu Yan, Xiaoting Yu, Qingpeng Kong, Joy Xie, Kevin Luo, Dewen Zeng, Yawen Wu, Zhenge Jia, Yiyu Shi
{"title":"Hardware design and the fairness of a neural network","authors":"Yuanbo Guo, Zheyu Yan, Xiaoting Yu, Qingpeng Kong, Joy Xie, Kevin Luo, Dewen Zeng, Yawen Wu, Zhenge Jia, Yiyu Shi","doi":"10.1038/s41928-024-01213-0","DOIUrl":"10.1038/s41928-024-01213-0","url":null,"abstract":"Ensuring the fairness of neural networks is crucial when applying deep learning techniques to critical applications such as medical diagnosis and vital signal monitoring. However, maintaining fairness becomes increasingly challenging when deploying these models on platforms with limited hardware resources, as existing fairness-aware neural network designs typically overlook the impact of resource constraints. Here we analyse the impact of the underlying hardware on the task of pursuing fairness. We use neural network accelerators with compute-in-memory architecture as examples. We first investigate the relationship between hardware platform and fairness-aware neural network design. We then discuss how hardware advancements in emerging computing-in-memory devices—in terms of on-chip memory capacity and device variability management—affect neural network fairness. We also identify challenges in designing fairness-aware neural networks on such resource-constrained hardware and consider potential approaches to overcome them. An analysis of the relationship between hardware platforms and fairness-aware neural network design shows how hardware advancements can affect the fairness of neural networks and highlights the need for future designs to consider this factor.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}