Hüsrev Cılasun, William Moy, Ziqing Zeng, Tahmida Islam, Hao Lo, Alex Vanasse, Megan Tan, Mohammad Anees, Ramprasath S, Abhimanyu Kumar, Sachin S. Sapatnekar, Chris H. Kim, Ulya R. Karpuzcu
{"title":"一种基于耦合振荡器的组合优化Ising芯片","authors":"Hüsrev Cılasun, William Moy, Ziqing Zeng, Tahmida Islam, Hao Lo, Alex Vanasse, Megan Tan, Mohammad Anees, Ramprasath S, Abhimanyu Kumar, Sachin S. Sapatnekar, Chris H. Kim, Ulya R. Karpuzcu","doi":"10.1038/s41928-025-01393-3","DOIUrl":null,"url":null,"abstract":"<p>Numerous practical problems—ranging from machine learning to bioinformatics—can be formulated as combinatorial optimization problems. However, the computational resources required to find an optimal solution to these problems using conventional von Neumann computers increases rapidly with problem size. Alternative solvers based on Ising machines, which directly leverage equilibrium characteristics of physical systems, offer a potential solution for such problems. Here we report a coupled-oscillator-based all-to-all-connected Ising chip that is manufactured in 65-nm complementary metal–oxide–semiconductor (CMOS) technology and operates at room temperature. The approach relies on logic-based coupling, which leads to low power consumption and a large number of all-to-all-connected spins. We show that the chip can solve representative combinatorial optimization problems in a more time- and energy-efficient manner than can optimized classical solvers in software and emerging quantum annealers. Due to its energy efficiency and all-to-all connectivity, our chip can also efficiently solve dense combinatorial optimization problems that cannot be effectively mapped or solved by quantum annealers.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"70 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coupled-oscillator-based Ising chip for combinatorial optimization\",\"authors\":\"Hüsrev Cılasun, William Moy, Ziqing Zeng, Tahmida Islam, Hao Lo, Alex Vanasse, Megan Tan, Mohammad Anees, Ramprasath S, Abhimanyu Kumar, Sachin S. Sapatnekar, Chris H. Kim, Ulya R. Karpuzcu\",\"doi\":\"10.1038/s41928-025-01393-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerous practical problems—ranging from machine learning to bioinformatics—can be formulated as combinatorial optimization problems. However, the computational resources required to find an optimal solution to these problems using conventional von Neumann computers increases rapidly with problem size. Alternative solvers based on Ising machines, which directly leverage equilibrium characteristics of physical systems, offer a potential solution for such problems. Here we report a coupled-oscillator-based all-to-all-connected Ising chip that is manufactured in 65-nm complementary metal–oxide–semiconductor (CMOS) technology and operates at room temperature. The approach relies on logic-based coupling, which leads to low power consumption and a large number of all-to-all-connected spins. We show that the chip can solve representative combinatorial optimization problems in a more time- and energy-efficient manner than can optimized classical solvers in software and emerging quantum annealers. Due to its energy efficiency and all-to-all connectivity, our chip can also efficiently solve dense combinatorial optimization problems that cannot be effectively mapped or solved by quantum annealers.</p>\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41928-025-01393-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-025-01393-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A coupled-oscillator-based Ising chip for combinatorial optimization
Numerous practical problems—ranging from machine learning to bioinformatics—can be formulated as combinatorial optimization problems. However, the computational resources required to find an optimal solution to these problems using conventional von Neumann computers increases rapidly with problem size. Alternative solvers based on Ising machines, which directly leverage equilibrium characteristics of physical systems, offer a potential solution for such problems. Here we report a coupled-oscillator-based all-to-all-connected Ising chip that is manufactured in 65-nm complementary metal–oxide–semiconductor (CMOS) technology and operates at room temperature. The approach relies on logic-based coupling, which leads to low power consumption and a large number of all-to-all-connected spins. We show that the chip can solve representative combinatorial optimization problems in a more time- and energy-efficient manner than can optimized classical solvers in software and emerging quantum annealers. Due to its energy efficiency and all-to-all connectivity, our chip can also efficiently solve dense combinatorial optimization problems that cannot be effectively mapped or solved by quantum annealers.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.