{"title":"Organic photodetectors that work underwater","authors":"Matthew Parker","doi":"10.1038/s41928-024-01238-5","DOIUrl":"10.1038/s41928-024-01238-5","url":null,"abstract":"","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"628-628"},"PeriodicalIF":33.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tuning electronic circuits close to absolute zero using quantum paraelectric varactors","authors":"","doi":"10.1038/s41928-024-01215-y","DOIUrl":"10.1038/s41928-024-01215-y","url":null,"abstract":"Radiofrequency tuning elements made of quantum paraelectric materials are demonstrated at temperatures close to absolute zero — a temperature regime in which conventional electronic tuning components do not work. This advance greatly improves the read-out sensitivity of quantum circuits that require operation at such low temperatures.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"733-734"},"PeriodicalIF":33.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenshuo Yue, Teng Zhang, Zhaokun Jing, Kai Wu, Yuxiang Yang, Zhen Yang, Yongqin Wu, Weihai Bu, Kai Zheng, Jin Kang, Yibo Lin, Yaoyu Tao, Bonan Yan, Ru Huang, Yuchao Yang
{"title":"A scalable universal Ising machine based on interaction-centric storage and compute-in-memory","authors":"Wenshuo Yue, Teng Zhang, Zhaokun Jing, Kai Wu, Yuxiang Yang, Zhen Yang, Yongqin Wu, Weihai Bu, Kai Zheng, Jin Kang, Yibo Lin, Yaoyu Tao, Bonan Yan, Ru Huang, Yuchao Yang","doi":"10.1038/s41928-024-01228-7","DOIUrl":"10.1038/s41928-024-01228-7","url":null,"abstract":"Ising machines are annealing processors that can solve combinatorial optimization problems via the physical evolution of the corresponding Ising graphs. Such machines are, however, typically restricted to solving problems with certain kinds of graph topology because the spin location and connections are fixed. Here, we report a universal Ising machine that supports arbitrary Ising graph topology with reasonable hardware resources using a coarse-grained compressed sparse row method to compress and store sparse Ising graph adjacency matrices. The approach, which we term interaction-centric storage, is suitable for any kind of Ising graph and reduces the memory scaling cost. We experimentally implement the Ising machine using compute-in-memory hardware based on a 40 nm resistive random-access memory arrays. We use the machine to solve max-cut and graph colouring problems, with the latter showing a 442–1,450 factor improvement in speed and 4.1 × 105–6.0 × 105 factor reduction in energy consumption compared to a general-purpose graphics processing unit. We also use our Ising machine to solve a realistic electronic design automation problem—multiple patterning lithography layout decomposition—with 390–65,550 times speedup compared to the integer linear programming algorithm on a typical central processing unit. An Ising machine that uses a coarse-grained compressed sparse row method to store sparse Ising graph adjacency matrices can be implemented with compute-in-memory hardware based on a resistive random-access memory array to efficiently solve combinatorial optimization problems.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"904-913"},"PeriodicalIF":33.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Priorities for net-zero web services","authors":"Mohit Arora, Iain McClenaghan, Lydia Wozniak","doi":"10.1038/s41928-024-01227-8","DOIUrl":"10.1038/s41928-024-01227-8","url":null,"abstract":"The complexity of the infrastructure underpinning the modern Internet has led to a lack of clarity on how to measure the energy consumption of web services and achieve sustainable web design. It is now crucial to redirect sustainability efforts in the sector towards more effective interventions.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"622-625"},"PeriodicalIF":33.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric H. Pollmann, Heyu Yin, Ilke Uguz, Agrita Dubey, Katie E. Wingel, John S. Choi, Sajjad Moazeni, Yatin Gilhotra, Victoria Andino-Pavlovsky, Adam Banees, Abhinav Parihar, Vivek Boominathan, Jacob T. Robinson, Ashok Veeraraghavan, Vincent A. Pieribone, Bijan Pesaran, Kenneth L. Shepard
{"title":"A subdural CMOS optical device for bidirectional neural interfacing","authors":"Eric H. Pollmann, Heyu Yin, Ilke Uguz, Agrita Dubey, Katie E. Wingel, John S. Choi, Sajjad Moazeni, Yatin Gilhotra, Victoria Andino-Pavlovsky, Adam Banees, Abhinav Parihar, Vivek Boominathan, Jacob T. Robinson, Ashok Veeraraghavan, Vincent A. Pieribone, Bijan Pesaran, Kenneth L. Shepard","doi":"10.1038/s41928-024-01209-w","DOIUrl":"10.1038/s41928-024-01209-w","url":null,"abstract":"Optical neurotechnologies use light to interface with neurons and can monitor and manipulate neural activity with high spatial-temporal precision over large cortical areas. There has been considerable progress in miniaturizing microscopes for head-mounted configurations, but existing devices are bulky and their application in humans will require a more non-invasive, fully implantable form factor. Here we report an ultrathin, miniaturized subdural complementary metal–oxide–semiconductor (CMOS) optical device for bidirectional optical stimulation and recording. We use a custom CMOS application-specific integrated circuit that is capable of both fluorescence imaging and optogenetic stimulation, creating a probe with a total thickness of less than 200 µm, which is thin enough to lie entirely within the subdural space of the primate brain. We show that the device can be used for imaging and optical stimulation in a mouse model and can be used to decode reach movement speed in a non-human primate. An implantable complementary metal–oxide–semiconductor (CMOS) optical probe, which is thin enough to be placed in the subdural space of the primate brain, can be used for imaging and optical stimulation in a mouse model, and can be used to decode reach movement speed in a non-human primate.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"829-841"},"PeriodicalIF":33.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hardware accelerators based on nanotube transistors","authors":"Kaixiang Kang, Lingzhi Wu, Min Li, Jianwen Zhao","doi":"10.1038/s41928-024-01231-y","DOIUrl":"10.1038/s41928-024-01231-y","url":null,"abstract":"High-purity carbon nanotubes can be used to create a tensor processing unit that has 3,000 transistors and a systolic array architecture.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"632-633"},"PeriodicalIF":33.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anyuan Gao, Shao-Wen Chen, Barun Ghosh, Jian-Xiang Qiu, Yu-Fei Liu, Yugo Onishi, Chaowei Hu, Tiema Qian, Damien Bérubé, Thao Dinh, Houchen Li, Christian Tzschaschel, Seunghyun Park, Tianye Huang, Shang-Wei Lien, Zhe Sun, Sheng-Chin Ho, Bahadur Singh, Kenji Watanabe, Takashi Taniguchi, David C. Bell, Arun Bansil, Hsin Lin, Tay-Rong Chang, Amir Yacoby, Ni Ni, Liang Fu, Qiong Ma, Su-Yang Xu
{"title":"An antiferromagnetic diode effect in even-layered MnBi2Te4","authors":"Anyuan Gao, Shao-Wen Chen, Barun Ghosh, Jian-Xiang Qiu, Yu-Fei Liu, Yugo Onishi, Chaowei Hu, Tiema Qian, Damien Bérubé, Thao Dinh, Houchen Li, Christian Tzschaschel, Seunghyun Park, Tianye Huang, Shang-Wei Lien, Zhe Sun, Sheng-Chin Ho, Bahadur Singh, Kenji Watanabe, Takashi Taniguchi, David C. Bell, Arun Bansil, Hsin Lin, Tay-Rong Chang, Amir Yacoby, Ni Ni, Liang Fu, Qiong Ma, Su-Yang Xu","doi":"10.1038/s41928-024-01219-8","DOIUrl":"10.1038/s41928-024-01219-8","url":null,"abstract":"In a p–n junction, the separation of positive and negative charges leads to diode transport, in which charge flows in only one direction. Non-centrosymmetric polar conductors are intrinsic diodes that could be of use in the development of nonlinear applications. Such systems have recently been extended to non-centrosymmetric superconductors, and the superconducting diode effect has been observed. Here, we report an antiferromagnetic diode effect in a centrosymmetric crystal without directional charge separation. We observed large second-harmonic transport in a nonlinear electronic device enabled by the compensated antiferromagnetic state of even-layered MnBi2Te4. We show that this antiferromagnetic diode effect can be used to create in-plane field-effect transistors and microwave-energy-harvesting devices. We also show that electrical sum-frequency generation can be used as a tool to detect nonlinear responses in quantum materials. An antiferromagnetic diode effect was observed in a centrosymmetric crystal without directional charge separation. This effect could be used to create in-plane field-effect transistors and microwave-energy-harvesting devices.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"751-759"},"PeriodicalIF":33.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A scalable integration process for ultrafast two-dimensional flash memory","authors":"Yongbo Jiang, Chunsen Liu, Zhenyuan Cao, Chuhang Li, Zizheng Liu, Chong Wang, Yutong Xiang, Peng Zhou","doi":"10.1038/s41928-024-01229-6","DOIUrl":"10.1038/s41928-024-01229-6","url":null,"abstract":"Data-driven computing is highly dependent on memory performance. Flash memory is presently the dominant non-volatile memory technology but suffers from limitations in terms of speed. Two-dimensional (2D) materials could potentially be used to create ultrafast flash memory. However, due to interface engineering problems, ultrafast non-volatile performance is presently restricted to exfoliated 2D materials, and there is a lack of performance demonstrations with short-channel devices. Here, we report a scalable integration process for ultrafast 2D flash memory that can be used to integrate 1,024 flash-memory devices with a yield of over 98%. We illustrate the approach with two different tunnelling barrier configurations of the memory stack (HfO2/Pt/HfO2 and Al2O3/Pt/Al2O3) and using transferred chemical vapour deposition-grown monolayer molybdenum disulfide. We also show that the channel length of the ultrafast flash memory can be scaled down to sub-10 nm, which is below the physical limit of silicon flash memory. Our sub-10 nm devices offer non-volatile information storage (up to 4 bits) and robust endurance (over 105). A scalable integration process for ultrafast two-dimensional flash memory can be used to integrate 1,024 devices with a yield of over 98%. The channel length of the devices could also be scaled down to sub-10 nm.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 10","pages":"868-875"},"PeriodicalIF":33.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Free-standing printed electronics with direct ink writing","authors":"Yang Yang","doi":"10.1038/s41928-024-01230-z","DOIUrl":"10.1038/s41928-024-01230-z","url":null,"abstract":"A direct ink-writing technique that relies on tension in the nozzle can be used to print free-standing metal structures with aspect ratios of up to 750:1.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 8","pages":"630-631"},"PeriodicalIF":33.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang
{"title":"A biodegradable and self-deployable electronic tent electrode for brain cortex interfacing","authors":"Jae-Young Bae, Gyeong-Seok Hwang, Young-Seo Kim, Jooik Jeon, Minseong Chae, Joon-Woo Kim, Sian Lee, Seongchan Kim, Soo-Hwan Lee, Sung-Geun Choi, Ju-Yong Lee, Jae-Hwan Lee, Kyung-Sub Kim, Joo-Hyeon Park, Woo-Jin Lee, Yu-Chan Kim, Kang-Sik Lee, Jeonghyun Kim, Hyojin Lee, Jung Keun Hyun, Ju-Young Kim, Seung-Kyun Kang","doi":"10.1038/s41928-024-01216-x","DOIUrl":"10.1038/s41928-024-01216-x","url":null,"abstract":"High-density, large-area electronic interfaces are a key component of brain–computer interface technologies. However, current designs typically require patients to undergo invasive procedures, which can lead to various complications. Here, we report a biodegradable and self-deployable tent electrode for brain cortex interfacing. The system can be integrated with multiplexing arrays and a wireless module for near-field communication and data transfer. It can be programmably packaged and self-deployed using a syringe for minimally invasive delivery through a small hole. Following delivery, it can expand to cover an area around 200 times its initial size. The electrode also naturally decomposes within the body after use, minimizing the impact of subsequent removal surgery. Through in vivo demonstrations, we show that our cortical-interfacing platform can be used to stimulate large populations of cortical activities. A biodegradable electronic tent electrode array that can be inserted into the brain cortex using a syringe, where it then expands to 200 times its original size, can be used for electrocorticography monitoring.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 9","pages":"815-828"},"PeriodicalIF":33.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}