Seung-Rok Kim, Yifei Zhan, Noelle Davis, Suhrith Bellamkonda, Liam Gillan, Elina Hakola, Jussi Hiltunen, Ali Javey
{"title":"皮肤电活动作为身体和精神活动中汗率监测的代理","authors":"Seung-Rok Kim, Yifei Zhan, Noelle Davis, Suhrith Bellamkonda, Liam Gillan, Elina Hakola, Jussi Hiltunen, Ali Javey","doi":"10.1038/s41928-025-01365-7","DOIUrl":null,"url":null,"abstract":"<p>Electrodermal activity has long been used for mental activity monitoring by measuring skin conductance at specific locations, such as fingertips, with high sweat gland density. However, electrodermal activity has not been considered useful for physical activity monitoring, where large sweat volumes are generated, resulting in the accumulation of sweat at the skin–electrode interface and, thus, preventing further dynamic response to sweating events. Here we show that electrodermal activity can be used as a proxy for sweat loss measurement under both low and high physical activity levels. We use wearable sweat sensors that consist of water-permeable electrodes and microfluidic-based sweat analysers, and show that skin conductance is proportional to the instantaneous sweat loss. We demonstrate that sweat loss during exercise can be estimated by integrating skin conductance over time, which can be applied to assess the body hydration status of exercisers. From multisite measurements of skin conductance, we show that the wrist, forearm and upper arm are reflective of physical activity levels, whereas the finger is indicative of mental activity. Simultaneous measurement of two different sites selectively decouples mental and physical activities.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"72 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodermal activity as a proxy for sweat rate monitoring during physical and mental activities\",\"authors\":\"Seung-Rok Kim, Yifei Zhan, Noelle Davis, Suhrith Bellamkonda, Liam Gillan, Elina Hakola, Jussi Hiltunen, Ali Javey\",\"doi\":\"10.1038/s41928-025-01365-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrodermal activity has long been used for mental activity monitoring by measuring skin conductance at specific locations, such as fingertips, with high sweat gland density. However, electrodermal activity has not been considered useful for physical activity monitoring, where large sweat volumes are generated, resulting in the accumulation of sweat at the skin–electrode interface and, thus, preventing further dynamic response to sweating events. Here we show that electrodermal activity can be used as a proxy for sweat loss measurement under both low and high physical activity levels. We use wearable sweat sensors that consist of water-permeable electrodes and microfluidic-based sweat analysers, and show that skin conductance is proportional to the instantaneous sweat loss. We demonstrate that sweat loss during exercise can be estimated by integrating skin conductance over time, which can be applied to assess the body hydration status of exercisers. From multisite measurements of skin conductance, we show that the wrist, forearm and upper arm are reflective of physical activity levels, whereas the finger is indicative of mental activity. Simultaneous measurement of two different sites selectively decouples mental and physical activities.</p>\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41928-025-01365-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-025-01365-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Electrodermal activity as a proxy for sweat rate monitoring during physical and mental activities
Electrodermal activity has long been used for mental activity monitoring by measuring skin conductance at specific locations, such as fingertips, with high sweat gland density. However, electrodermal activity has not been considered useful for physical activity monitoring, where large sweat volumes are generated, resulting in the accumulation of sweat at the skin–electrode interface and, thus, preventing further dynamic response to sweating events. Here we show that electrodermal activity can be used as a proxy for sweat loss measurement under both low and high physical activity levels. We use wearable sweat sensors that consist of water-permeable electrodes and microfluidic-based sweat analysers, and show that skin conductance is proportional to the instantaneous sweat loss. We demonstrate that sweat loss during exercise can be estimated by integrating skin conductance over time, which can be applied to assess the body hydration status of exercisers. From multisite measurements of skin conductance, we show that the wrist, forearm and upper arm are reflective of physical activity levels, whereas the finger is indicative of mental activity. Simultaneous measurement of two different sites selectively decouples mental and physical activities.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.