Akhil S. Kumar, Stefano Dalcanale, Michael J. Uren, James W. Pomeroy, Matthew D. Smith, Justin A. Parke, Robert S. Howell, Martin Kuball
{"title":"Gallium nitride multichannel devices with latch-induced sub-60-mV-per-decade subthreshold slopes for radiofrequency applications","authors":"Akhil S. Kumar, Stefano Dalcanale, Michael J. Uren, James W. Pomeroy, Matthew D. Smith, Justin A. Parke, Robert S. Howell, Martin Kuball","doi":"10.1038/s41928-025-01391-5","DOIUrl":null,"url":null,"abstract":"<p>Aluminium gallium nitride/gallium nitride (AlGaN/GaN)-based superlattice castellated field-effect transistors are a potential basis for high-power radiofrequency amplifiers and switches in future radars. The reliability of such devices, however, is not well understood. Here we report transistor latching in multichannel GaN transistors. At the latching condition, drain current sharply transits from an off-state value to a high on-state value with a slope less than 60 mV per decade. Current–voltage measurements, simulations and correlated electroluminescent emission at the latching condition indicate that triggering of fin-width-dependent localized impact ionization is responsible for the latching. This localization is attributed to the presence of fin-width variation due to variability in the fabrication process. The latching condition is reversible and non-degrading, and we show that it can lead to improvement in the transconductance characteristics of transistors, implying improved linearity and power in radiofrequency power amplifiers.</p>","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"237 1","pages":""},"PeriodicalIF":33.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41928-025-01391-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminium gallium nitride/gallium nitride (AlGaN/GaN)-based superlattice castellated field-effect transistors are a potential basis for high-power radiofrequency amplifiers and switches in future radars. The reliability of such devices, however, is not well understood. Here we report transistor latching in multichannel GaN transistors. At the latching condition, drain current sharply transits from an off-state value to a high on-state value with a slope less than 60 mV per decade. Current–voltage measurements, simulations and correlated electroluminescent emission at the latching condition indicate that triggering of fin-width-dependent localized impact ionization is responsible for the latching. This localization is attributed to the presence of fin-width variation due to variability in the fabrication process. The latching condition is reversible and non-degrading, and we show that it can lead to improvement in the transconductance characteristics of transistors, implying improved linearity and power in radiofrequency power amplifiers.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.