Nature MaterialsPub Date : 2024-08-30DOI: 10.1038/s41563-024-01982-1
William A. Tisdale
{"title":"Twisted perovskite layers come together","authors":"William A. Tisdale","doi":"10.1038/s41563-024-01982-1","DOIUrl":"10.1038/s41563-024-01982-1","url":null,"abstract":"The realization of twisted ligand-free two-dimensional halide perovskite-based moiré superlattices enables twistronic control of exciton dynamics in these systems and brings stimulating implications towards the development of halide perovskite photonic devices.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 9","pages":"1155-1156"},"PeriodicalIF":37.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature MaterialsPub Date : 2024-08-30DOI: 10.1038/s41563-024-01979-w
Leonard J. Barbour, Catharine Esterhuysen
{"title":"Harnessing disorder to advance metal–organic framework resilience","authors":"Leonard J. Barbour, Catharine Esterhuysen","doi":"10.1038/s41563-024-01979-w","DOIUrl":"10.1038/s41563-024-01979-w","url":null,"abstract":"High-pressure experiments on the aperiodic material TRUMOF-1 reveal that linkage disorder thwarts collapse mechanisms, thus enhancing mechanical stability.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 9","pages":"1159-1160"},"PeriodicalIF":37.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature MaterialsPub Date : 2024-08-30DOI: 10.1038/s41563-024-01959-0
Arun Devaraj
{"title":"Quantifying the atomic neighbourhoods in complex concentrated alloys","authors":"Arun Devaraj","doi":"10.1038/s41563-024-01959-0","DOIUrl":"10.1038/s41563-024-01959-0","url":null,"abstract":"Atom probe tomography unlocks the potential to precisely analyse the short-range ordering in a CoCrNi medium-entropy alloy.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 9","pages":"1153-1154"},"PeriodicalIF":37.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature MaterialsPub Date : 2024-08-30DOI: 10.1038/s41563-024-01999-6
{"title":"Moiré beyond van der Waals","authors":"","doi":"10.1038/s41563-024-01999-6","DOIUrl":"10.1038/s41563-024-01999-6","url":null,"abstract":"Inspired by non-trivial band topology and the variety of correlated electronic phases in moiré superlattices formed in van der Waals materials, scientists are finding alternative material platforms to exploit the rich phenomena arising from the twist-angle degree of freedom.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 9","pages":"1151-1151"},"PeriodicalIF":37.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41563-024-01999-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature MaterialsPub Date : 2024-08-30DOI: 10.1038/s41563-024-01969-y
Grace A. R. Rohaley, Torsten Hegmann
{"title":"Let’s twist again","authors":"Grace A. R. Rohaley, Torsten Hegmann","doi":"10.1038/s41563-024-01969-y","DOIUrl":"10.1038/s41563-024-01969-y","url":null,"abstract":"Filamentous viruses are a tunable platform for understanding the propagation of chirality across length scales, starting from the helical organization of major coat proteins on the virion surface to the liquid crystalline cholesteric phases formed in aqueous suspensions.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 9","pages":"1161-1163"},"PeriodicalIF":37.2,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142091145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature MaterialsPub Date : 2024-08-28DOI: 10.1038/s41563-024-01986-x
Jihong Bae, Jongbum Won, Taeyoung Kim, Sangjin Choi, Hyesoo Kim, Seung-Hyun Victor Oh, Giyeok Lee, Eunsil Lee, Sijin Jeon, Minjung Kim, Hyung Wan Do, Dongchul Seo, Sungsoon Kim, Youngjun Cho, Hyeonsoo Kang, Bokyeong Kim, Hong Choi, Jihoon Han, Taehoon Kim, Narguess Nemati, Chanho Park, Kyuho Lee, Hongjae Moon, Jeongmin Kim, Hyunggeun Lee, Daniel W. Davies, Dohyun Kim, Seunghun Kang, Byung-Kyu Yu, Jaegyeom Kim, Min Kyung Cho, Jee-Hwan Bae, Soohyung Park, Jungkil Kim, Ha-Jun Sung, Myung-Chul Jung, In Chung, Heonjin Choi, Hyunyong Choi, Dohun Kim, Hionsuck Baik, Jae-Hyun Lee, Heejun Yang, Yunseok Kim, Hong-Gyu Park, Wooyoung Lee, Kee Joo Chang, Miso Kim, Dong Won Chun, Myung Joon Han, Aron Walsh, Aloysius Soon, Jinwoo Cheon, Cheolmin Park, Jong-Young Kim, Wooyoung Shim
{"title":"Cation-eutaxy-enabled III–V-derived van der Waals crystals as memristive semiconductors","authors":"Jihong Bae, Jongbum Won, Taeyoung Kim, Sangjin Choi, Hyesoo Kim, Seung-Hyun Victor Oh, Giyeok Lee, Eunsil Lee, Sijin Jeon, Minjung Kim, Hyung Wan Do, Dongchul Seo, Sungsoon Kim, Youngjun Cho, Hyeonsoo Kang, Bokyeong Kim, Hong Choi, Jihoon Han, Taehoon Kim, Narguess Nemati, Chanho Park, Kyuho Lee, Hongjae Moon, Jeongmin Kim, Hyunggeun Lee, Daniel W. Davies, Dohyun Kim, Seunghun Kang, Byung-Kyu Yu, Jaegyeom Kim, Min Kyung Cho, Jee-Hwan Bae, Soohyung Park, Jungkil Kim, Ha-Jun Sung, Myung-Chul Jung, In Chung, Heonjin Choi, Hyunyong Choi, Dohun Kim, Hionsuck Baik, Jae-Hyun Lee, Heejun Yang, Yunseok Kim, Hong-Gyu Park, Wooyoung Lee, Kee Joo Chang, Miso Kim, Dong Won Chun, Myung Joon Han, Aron Walsh, Aloysius Soon, Jinwoo Cheon, Cheolmin Park, Jong-Young Kim, Wooyoung Shim","doi":"10.1038/s41563-024-01986-x","DOIUrl":"10.1038/s41563-024-01986-x","url":null,"abstract":"Novel two-dimensional semiconductor crystals can exhibit diverse physical properties beyond their inherent semiconducting attributes, making their pursuit paramount. Memristive properties, as exemplars of these attributes, are predominantly manifested in wide-bandgap materials. However, simultaneously harnessing semiconductor properties alongside memristive characteristics to produce memtransistors is challenging. Herein we prepared a class of semiconducting III–V-derived van der Waals crystals, specifically the HxA1–xBX form, exhibiting memristive characteristics. To identify candidates for the material synthesis, we conducted a systematic high-throughput screening, leading us to 44 prospective III–V candidates; of these, we successfully synthesized ten, including nitrides, phosphides, arsenides and antimonides. These materials exhibited intriguing characteristics such as electrochemical polarization and memristive phenomena while retaining their semiconductive attributes. We demonstrated the gate-tunable synaptic and logic functions within single-gate memtransistors, capitalizing on the synergistic interplay between the semiconducting and memristive properties of our two-dimensional crystals. Our approach guides the discovery of van der Waals materials with unique properties from unconventional crystal symmetries. New two-dimensional semiconductors may exhibit properties beyond inherent semiconducting attributes. Here the authors report protonated semiconducting III–V-derived van der Waals crystals with memristive properties.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1402-1410"},"PeriodicalIF":37.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature MaterialsPub Date : 2024-08-28DOI: 10.1038/s41563-024-01995-w
Hanbin Deng, Guowei Liu, Z. Guguchia, Tianyu Yang, Jinjin Liu, Zhiwei Wang, Yaofeng Xie, Sen Shao, Haiyang Ma, William Liège, Frédéric Bourdarot, Xiao-Yu Yan, Hailang Qin, C. Mielke III, R. Khasanov, H. Luetkens, Xianxin Wu, Guoqing Chang, Jianpeng Liu, Morten Holm Christensen, Andreas Kreisel, Brian Møller Andersen, Wen Huang, Yue Zhao, Philippe Bourges, Yugui Yao, Pengcheng Dai, Jia-Xin Yin
{"title":"Evidence for time-reversal symmetry-breaking kagome superconductivity","authors":"Hanbin Deng, Guowei Liu, Z. Guguchia, Tianyu Yang, Jinjin Liu, Zhiwei Wang, Yaofeng Xie, Sen Shao, Haiyang Ma, William Liège, Frédéric Bourdarot, Xiao-Yu Yan, Hailang Qin, C. Mielke III, R. Khasanov, H. Luetkens, Xianxin Wu, Guoqing Chang, Jianpeng Liu, Morten Holm Christensen, Andreas Kreisel, Brian Møller Andersen, Wen Huang, Yue Zhao, Philippe Bourges, Yugui Yao, Pengcheng Dai, Jia-Xin Yin","doi":"10.1038/s41563-024-01995-w","DOIUrl":"10.1038/s41563-024-01995-w","url":null,"abstract":"Superconductivity and magnetism are often antagonistic in quantum matter, although their intertwining has long been considered in frustrated-lattice systems. Here we utilize scanning tunnelling microscopy and muon spin resonance to demonstrate time-reversal symmetry-breaking superconductivity in kagome metal Cs(V, Ta)3Sb5, where the Cooper pairing exhibits magnetism and is modulated by it. In the magnetic channel, we observe spontaneous internal magnetism in a fully gapped superconducting state. Under the perturbation of inverse magnetic fields, we detect a time-reversal asymmetrical interference of Bogoliubov quasi-particles at a circular vector. At this vector, the pairing gap spontaneously modulates, which is distinct from pair density waves occurring at a point vector and consistent with the theoretical proposal of an unusual interference effect under time-reversal symmetry breaking. The correlation between internal magnetism, Bogoliubov quasi-particles and pairing modulation provides a chain of experimental indications for time-reversal symmetry-breaking kagome superconductivity. The authors use scanning tunnelling microscopy and muon spin resonance to demonstrate time-reversal symmetry-breaking superconductivity in Cs(V, Ta)3Sb5. The Cooper pairing in this state exhibits magnetism and is modulated by it.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 12","pages":"1639-1644"},"PeriodicalIF":37.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature MaterialsPub Date : 2024-08-27DOI: 10.1038/s41563-024-01987-w
Lina Liu, Yujin Ji, Marco Bianchi, Saban M. Hus, Zheshen Li, Richard Balog, Jill A. Miwa, Philip Hofmann, An-Ping Li, Dmitry Y. Zemlyanov, Youyong Li, Yong P. Chen
{"title":"A metastable pentagonal 2D material synthesized by symmetry-driven epitaxy","authors":"Lina Liu, Yujin Ji, Marco Bianchi, Saban M. Hus, Zheshen Li, Richard Balog, Jill A. Miwa, Philip Hofmann, An-Ping Li, Dmitry Y. Zemlyanov, Youyong Li, Yong P. Chen","doi":"10.1038/s41563-024-01987-w","DOIUrl":"10.1038/s41563-024-01987-w","url":null,"abstract":"Most two-dimensional (2D) materials experimentally studied so far have hexagons as their building blocks. Only a few exceptions, such as PdSe2, are lower in energy in pentagonal phases and exhibit pentagons as building blocks. Although theory has predicted a large number of pentagonal 2D materials, many of these are metastable and their experimental realization is difficult. Here we report the successful synthesis of a metastable pentagonal 2D material, monolayer pentagonal PdTe2, by symmetry-driven epitaxy. Scanning tunnelling microscopy and complementary spectroscopy measurements are used to characterize this material, which demonstrates well-ordered low-symmetry atomic arrangements and is stabilized by lattice matching with the underlying Pd(100) substrate. Theoretical calculations, along with angle-resolved photoemission spectroscopy, reveal monolayer pentagonal PdTe2 to be a semiconductor with an indirect bandgap of 1.05 eV. Our work opens an avenue for the synthesis of pentagon-based 2D materials and gives opportunities to explore their applications such as multifunctional nanoelectronics. A metastable pentagonal PdTe2 monolayer has been synthesized through symmetry-driven epitaxy, utilizing lattice matching with a Pd(100) substrate. The lattices, phonons and electronic structures of this phase have been studied.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"23 10","pages":"1339-1346"},"PeriodicalIF":37.2,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142080956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}