{"title":"Precise synthesis of advanced polyarylamines for efficient perovskite solar cells","authors":"Ziqiu Shen, Yanchun Huang, Yuan Dong, Kangrong Yan, Hongzhen Chen, Chang-Zhi Li","doi":"10.1038/s41563-025-02199-6","DOIUrl":null,"url":null,"abstract":"<p>Although being highly demanded in organic electronics, functional conjugated polymers face challenges on scalable synthesis with batch uniformities. Here a reactivity-regulated sequent cross-coupling carbon–nitrogen polycondensation method is developed to enable the precise synthesis of functional polyarylamines with excellent batch-to-batch uniformity. It is revealed that the stepwise regulation of intermediate reactivities is key to accomplish controllable polycondensation via two sequent palladium-promoted carbon–nitrogen coupling cycles, which is distinct to the unicyclic carbon–carbon coupling. A variety of polyarylamines are prepared to improve the material functionalities, where a ternary polymer consisting of polar substituents is shown to optimize the interfacial and bulk properties of perovskite layers fabricated on top. The corresponding inverted perovskite solar cells achieved remarkable power conversion efficiencies of 25.2% (active area, 5.97 mm<sup>2</sup>) and 23.2% (active area, 128 mm<sup>2</sup>), along with decent operational stabilities. Overall, this work provides an effective polymerization method for advanced conjugated polymers to enable high-performance optoelectronics.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"71 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02199-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Although being highly demanded in organic electronics, functional conjugated polymers face challenges on scalable synthesis with batch uniformities. Here a reactivity-regulated sequent cross-coupling carbon–nitrogen polycondensation method is developed to enable the precise synthesis of functional polyarylamines with excellent batch-to-batch uniformity. It is revealed that the stepwise regulation of intermediate reactivities is key to accomplish controllable polycondensation via two sequent palladium-promoted carbon–nitrogen coupling cycles, which is distinct to the unicyclic carbon–carbon coupling. A variety of polyarylamines are prepared to improve the material functionalities, where a ternary polymer consisting of polar substituents is shown to optimize the interfacial and bulk properties of perovskite layers fabricated on top. The corresponding inverted perovskite solar cells achieved remarkable power conversion efficiencies of 25.2% (active area, 5.97 mm2) and 23.2% (active area, 128 mm2), along with decent operational stabilities. Overall, this work provides an effective polymerization method for advanced conjugated polymers to enable high-performance optoelectronics.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.