Taketo Handa, Chun-Ying Huang, Yiliu Li, Nicholas Olsen, Daniel G. Chica, David D. Xu, Felix Sturm, James W. McIver, Xavier Roy, Xiaoyang Zhu
{"title":"Terahertz emission from giant optical rectification in a van der Waals material","authors":"Taketo Handa, Chun-Ying Huang, Yiliu Li, Nicholas Olsen, Daniel G. Chica, David D. Xu, Felix Sturm, James W. McIver, Xavier Roy, Xiaoyang Zhu","doi":"10.1038/s41563-025-02201-1","DOIUrl":null,"url":null,"abstract":"<p>The exfoliation and stacking of two-dimensional van der Waals crystals have created unprecedented opportunities in the discovery of quantum phases. A major obstacle to the advancement of this field is the limited spectroscopic access due to a mismatch in the sample sizes (10<sup>−6</sup>–10<sup>−5</sup> m) and the wavelengths (10<sup>−4</sup>–10<sup>−3</sup> m) of electromagnetic radiation relevant to their low-energy excitations. Here we introduce ferroelectric semiconductor NbOI<sub>2</sub> as a two-dimensional van der Waals material capable of operating as a van der Waals terahertz emitter. We demonstrate intense and broadband terahertz generation from NbOI<sub>2</sub> with an optical rectification efficiency that is more than one order of magnitude higher than that of ZnTe, the current standard terahertz emitter. Moreover, this NbOI<sub>2</sub> terahertz emitter can be integrated into van der Waals heterostructures to enable on-chip near-field terahertz spectroscopy of a target van der Waals material and device. Our approach provides a general spectroscopic tool for two-dimensional van der Waals materials and quantum matter.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"58 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02201-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The exfoliation and stacking of two-dimensional van der Waals crystals have created unprecedented opportunities in the discovery of quantum phases. A major obstacle to the advancement of this field is the limited spectroscopic access due to a mismatch in the sample sizes (10−6–10−5 m) and the wavelengths (10−4–10−3 m) of electromagnetic radiation relevant to their low-energy excitations. Here we introduce ferroelectric semiconductor NbOI2 as a two-dimensional van der Waals material capable of operating as a van der Waals terahertz emitter. We demonstrate intense and broadband terahertz generation from NbOI2 with an optical rectification efficiency that is more than one order of magnitude higher than that of ZnTe, the current standard terahertz emitter. Moreover, this NbOI2 terahertz emitter can be integrated into van der Waals heterostructures to enable on-chip near-field terahertz spectroscopy of a target van der Waals material and device. Our approach provides a general spectroscopic tool for two-dimensional van der Waals materials and quantum matter.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.