Xiaodong Zheng, Shizhe Feng, Chi Shing Tsang, Quoc Huy Thi, Wei Han, Lok Wing Wong, Haijun Liu, Chun-Sing Lee, Shu Ping Lau, Thuc Hue Ly, Zhiping Xu, Jiong Zhao
{"title":"扭转辅助二维过渡金属二硫族化合物的本征增韧","authors":"Xiaodong Zheng, Shizhe Feng, Chi Shing Tsang, Quoc Huy Thi, Wei Han, Lok Wing Wong, Haijun Liu, Chun-Sing Lee, Shu Ping Lau, Thuc Hue Ly, Zhiping Xu, Jiong Zhao","doi":"10.1038/s41563-025-02193-y","DOIUrl":null,"url":null,"abstract":"<p>Material fractures are typically irreversible, marking a one-time event leading to failure. Great efforts have been made to enhance both strength and fracture toughness of bulk materials for engineering applications, such as by introducing self-recovery and secondary breaking behaviours. In low-dimensional structures, two-dimensional materials often exhibit exceptional strength but accompanied by extreme brittleness. Here we discover that the toughness of two-dimensional materials can be enhanced without sacrificing strength—by simply twisting the layers. Through in situ scanning transmission electron microscopy, supported by nanoindentation and theoretical analysis, we reveal that twisted bilayer structures enable sequential fracture events: initial cracks heal to form stable grain boundaries, which then shield subsequent fracture tips from stress concentration. This process consumes additional energy compared with conventional fracture, with toughness enhancement tunable through twist angle adjustment. The intrinsic toughening mechanism via twisting, along with the emerging electronic properties of twistronics that are currently attracting substantial attention, presents an exciting opportunity for future devices.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"96 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twist-assisted intrinsic toughening in two-dimensional transition metal dichalcogenides\",\"authors\":\"Xiaodong Zheng, Shizhe Feng, Chi Shing Tsang, Quoc Huy Thi, Wei Han, Lok Wing Wong, Haijun Liu, Chun-Sing Lee, Shu Ping Lau, Thuc Hue Ly, Zhiping Xu, Jiong Zhao\",\"doi\":\"10.1038/s41563-025-02193-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Material fractures are typically irreversible, marking a one-time event leading to failure. Great efforts have been made to enhance both strength and fracture toughness of bulk materials for engineering applications, such as by introducing self-recovery and secondary breaking behaviours. In low-dimensional structures, two-dimensional materials often exhibit exceptional strength but accompanied by extreme brittleness. Here we discover that the toughness of two-dimensional materials can be enhanced without sacrificing strength—by simply twisting the layers. Through in situ scanning transmission electron microscopy, supported by nanoindentation and theoretical analysis, we reveal that twisted bilayer structures enable sequential fracture events: initial cracks heal to form stable grain boundaries, which then shield subsequent fracture tips from stress concentration. This process consumes additional energy compared with conventional fracture, with toughness enhancement tunable through twist angle adjustment. The intrinsic toughening mechanism via twisting, along with the emerging electronic properties of twistronics that are currently attracting substantial attention, presents an exciting opportunity for future devices.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-025-02193-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02193-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Twist-assisted intrinsic toughening in two-dimensional transition metal dichalcogenides
Material fractures are typically irreversible, marking a one-time event leading to failure. Great efforts have been made to enhance both strength and fracture toughness of bulk materials for engineering applications, such as by introducing self-recovery and secondary breaking behaviours. In low-dimensional structures, two-dimensional materials often exhibit exceptional strength but accompanied by extreme brittleness. Here we discover that the toughness of two-dimensional materials can be enhanced without sacrificing strength—by simply twisting the layers. Through in situ scanning transmission electron microscopy, supported by nanoindentation and theoretical analysis, we reveal that twisted bilayer structures enable sequential fracture events: initial cracks heal to form stable grain boundaries, which then shield subsequent fracture tips from stress concentration. This process consumes additional energy compared with conventional fracture, with toughness enhancement tunable through twist angle adjustment. The intrinsic toughening mechanism via twisting, along with the emerging electronic properties of twistronics that are currently attracting substantial attention, presents an exciting opportunity for future devices.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.