{"title":"Dodging mitochondrial mislocalization","authors":"Lisa Heinke","doi":"10.1038/s41580-025-00840-5","DOIUrl":"10.1038/s41580-025-00840-5","url":null,"abstract":"Subunits of mitochondrial and cytosolic ribosomes need to be targeted to their correction cellular location. A study identified a mitochondrial avoidance segment in a eukaryotic cytosolic ribosome subunit that prevents its mislocalization to mitochondria.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 4","pages":"253-253"},"PeriodicalIF":81.3,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143560754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving chemical reprogramming strategies","authors":"Yanglu Wang, Lin Cheng","doi":"10.1038/s41580-025-00836-1","DOIUrl":"10.1038/s41580-025-00836-1","url":null,"abstract":"In this Tools of the Trade article, Wang and Cheng (Deng Lab) describe an improved protocol for the generation of human pluripotent stem cells by chemical reprogramming based on the targeting of epigenetic obstacles.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 5","pages":"333-333"},"PeriodicalIF":81.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Profiling the disordered proteome in cells using a chemical tag","authors":"Tze Cin Owyong, Shouxiang Zhang","doi":"10.1038/s41580-025-00833-4","DOIUrl":"10.1038/s41580-025-00833-4","url":null,"abstract":"In this Tools of the Trade article, Zhang and Owyong (Hong lab) discuss the development of a fluorescent probe that binds disordered proteins in situ and allows their enrichment and identification using a mass-spectrometry-based workflow.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 5","pages":"334-334"},"PeriodicalIF":81.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Regulation and function of insulin and insulin-like growth factor receptor signalling","authors":"Eunhee Choi, Cunming Duan, Xiao-chen Bai","doi":"10.1038/s41580-025-00826-3","DOIUrl":"https://doi.org/10.1038/s41580-025-00826-3","url":null,"abstract":"<p>Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin–IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin–IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin–IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin–IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin–IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand–receptor interactions and functions of insulin–IGF receptor signalling in diseases.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"162 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Expanding the genetic code for site-specific lysine lactylation","authors":"Zhi Zong","doi":"10.1038/s41580-025-00832-5","DOIUrl":"10.1038/s41580-025-00832-5","url":null,"abstract":"In this Tools of the Trade article, Zong (Zhou lab) describes how using genetic code expansion enabled the precise incorporation of post-translational modifications such as lysine lactylation into proteins, allowing the authors to investigate their role in cellular processes.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 4","pages":"252-252"},"PeriodicalIF":81.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unravelling the complexity of gene regulation through multiplexed protein mapping","authors":"Isabel Nadine Goronzy","doi":"10.1038/s41580-025-00830-7","DOIUrl":"10.1038/s41580-025-00830-7","url":null,"abstract":"In this Tools of the Trade article, Goronzy (Guttman lab) describes the development of ChIP-DIP, a high-throughput, split-pool barcoding method that enables genome-wide profiling of hundreds of regulatory proteins, transforming our ability to study the regulation of gene activity across cell types and biological contexts.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 4","pages":"251-251"},"PeriodicalIF":81.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143124317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silencing centromeres with age","authors":"Katharine H. Wrighton","doi":"10.1038/s41580-025-00829-0","DOIUrl":"10.1038/s41580-025-00829-0","url":null,"abstract":"Centromeres are silenced in aged cells by the epigenetic downregulation of centromere transcription.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 3","pages":"173-173"},"PeriodicalIF":81.3,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143072634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shaping epithelial tissues by stem cell mechanics in development and cancer","authors":"Vincent F. Fiore, Jorge Almagro, Elaine Fuchs","doi":"10.1038/s41580-024-00821-0","DOIUrl":"https://doi.org/10.1038/s41580-024-00821-0","url":null,"abstract":"<p>Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"14 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}