{"title":"Nucleosomes as blueprints of genome architecture","authors":"Eytan Zlotorynski","doi":"10.1038/s41580-025-00866-9","DOIUrl":"10.1038/s41580-025-00866-9","url":null,"abstract":"Nucleosomes — the basic unit of chromatin architecture — have intrinsic biophysical features of large-scale genome organization.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 7","pages":"500-500"},"PeriodicalIF":81.3,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144211403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uncovering mRNA sequences that control translation initiation","authors":"Kyrillos S. Abdallah","doi":"10.1038/s41580-025-00862-z","DOIUrl":"https://doi.org/10.1038/s41580-025-00862-z","url":null,"abstract":"In this Tools of the Trade article, Abdallah (Gilbert lab) describes the development of direct analysis of ribosome targeting (DART), a tool designed to explore 5' UTR sequences for their potential to efficiently initiate translation.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"40 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144104113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enabling RNA-compatible synthetic receptors through RNA editing","authors":"Xiaowei Zhang, Luis S. Mille-Fragoso","doi":"10.1038/s41580-025-00863-y","DOIUrl":"https://doi.org/10.1038/s41580-025-00863-y","url":null,"abstract":"In this Tools of the Trade article, Zhang and Mille-Fragoso (Gao lab) describe a synthetic receptor platform that is activated by the binding of specific ligands, which triggers RNA editing, enabling the translation of an output protein.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"135 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144104100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structure, regulation and assembly of the photosynthetic electron transport chain","authors":"Matthew P. Johnson","doi":"10.1038/s41580-025-00847-y","DOIUrl":"https://doi.org/10.1038/s41580-025-00847-y","url":null,"abstract":"<p>The electron transfer chain of chloroplast thylakoid membranes uses solar energy to split water into electrons and protons, creating energetic gradients that drive the formation of photosynthetic fuel in the form of NADPH and ATP. These metabolites are then used to power the fixation of carbon dioxide into biomass through the Calvin–Benson–Bassham cycle in the chloroplast stroma. Recent advances in molecular genetics, structural biology and spectroscopy have provided an unprecedented understanding of the molecular events involved in photosynthetic electron transfer from photon capture to ATP production. Specifically, we have gained insights into the assembly of the photosynthetic complexes into larger supercomplexes, thylakoid membrane organization and the mechanisms underpinning efficient light harvesting, photoprotection and oxygen evolution. In this Review, I focus on the angiosperm plant thylakoid system, outlining our current knowledge on the structure, function, regulation and assembly of each component of the photosynthetic chain. I explain how solar energy is harvested and converted into chemical energy by the photosynthetic electron transfer chain, how its components are integrated into a complex membrane macrostructure and how this organization contributes to regulation and photoprotection.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"262 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144113689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functions and therapeutic applications of pseudouridylation","authors":"Nan Luo, Qiang Huang, Meiling Zhang, Chengqi Yi","doi":"10.1038/s41580-025-00852-1","DOIUrl":"https://doi.org/10.1038/s41580-025-00852-1","url":null,"abstract":"<p>The success of using pseudouridine (Ψ) and its methylation derivative in mRNA vaccines against SARS-CoV-2 has sparked a renewed interest in this RNA modification, known as the ‘fifth nucleotide’ of RNA. In this Review, we discuss the emerging functions of pseudouridylation in gene regulation, focusing on how pseudouridine in mRNA, tRNA and ribosomal RNA (rRNA) regulates translation. We also discuss the effects of pseudouridylation on RNA secondary structure, pre-mRNA splicing, and in vitro mRNA stability. In addition to nuclear-genome-encoded RNAs, pseudouridine is also present in mitochondria-encoded rRNA, mRNA and tRNA, where it has different distributions and functions compared with their nuclear counterparts. We then discuss the therapeutic potential of programmable pseudouridylation and mRNA vaccine optimization through pseudouridylation. Lastly, we briefly describe the latest quantitative pseudouridine detection methods. We posit that pseudouridine is a highly promising modification that merits further epitranscriptomics investigation and therapeutic application.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"39 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144097188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kevin P. Guay, Wen-Chuan Chou, Nathan P. Canniff, Kylie B. Paul, Daniel N. Hebert
{"title":"N-glycan-dependent protein maturation and quality control in the ER","authors":"Kevin P. Guay, Wen-Chuan Chou, Nathan P. Canniff, Kylie B. Paul, Daniel N. Hebert","doi":"10.1038/s41580-025-00855-y","DOIUrl":"https://doi.org/10.1038/s41580-025-00855-y","url":null,"abstract":"<p>The vast majority of proteins that traverse the mammalian secretory pathway become N-glycosylated in the endoplasmic reticulum (ER). The bulky glycan protein modifications, which are conserved in fungi and humans, act as maturation and quality-control tags. In this Review, we discuss findings published in the past decade that have rapidly expanded our understanding of the transfer and processing of N-glycans, as well as their role in protein maturation, quality control and trafficking in the ER, facilitated by structural insights into the addition of N-glycans by the oligosaccharyltransferases A and B (OST-A and OST-B). These findings suggest that N-glycans serve as reporters of the folding status of secretory proteins as they traverse the ER, enabling the lectin chaperones to guide their maturation. We also explore how the emergence of co-translational glycosylation and the expansion of the glycoproteostasis network in metazoans has expanded the role of N-glycans in early protein-maturation events and quality control.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"130 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144097136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms of auxin action in plant growth and development","authors":"Steffen Vanneste, Yuanrong Pei, Jiří Friml","doi":"10.1038/s41580-025-00851-2","DOIUrl":"https://doi.org/10.1038/s41580-025-00851-2","url":null,"abstract":"<p>The phytohormone auxin is a major signal coordinating growth and development in plants. The variety of its effects arises from its ability to form local auxin maxima and gradients within tissues, generated through directional cell-to-cell transport and elaborate metabolic control. These auxin distribution patterns instruct cells in a context-dependent manner to undergo predefined developmental transitions. In this Review, we discuss advances in auxin action at the level of homeostasis and signalling. We highlight key insights into the structural basis of PIN-mediated intercellular auxin transport and explore two novel non-transcriptional auxin signalling mechanisms: one involving intracellular Ca<sup>2+</sup> transients and another involving cell-surface auxin perception that mediates global, ultrafast phosphorylation. Furthermore, we examine emerging evidence indicating the involvement of cyclic adenosine monophosphate as a second messenger in the transcriptional auxin response. Together, these recent developments in auxin research have profoundly deepened our understanding of the complex and diverse activities of auxin in plant growth and development.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"17 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144087863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular machineries shaping the mitochondrial inner membrane","authors":"Oliver Daumke, Martin van der Laan","doi":"10.1038/s41580-025-00854-z","DOIUrl":"https://doi.org/10.1038/s41580-025-00854-z","url":null,"abstract":"<p>Mitochondria display intricately shaped deep invaginations of the mitochondrial inner membrane (MIM) termed cristae. This peculiar membrane architecture is essential for diverse mitochondrial functions, such as oxidative phosphorylation or the biosynthesis of cellular building blocks. Conserved protein nano-machineries such as F<sub>1</sub>F<sub>o</sub>-ATP synthase oligomers and the mitochondrial contact site and cristae organizing system (MICOS) act as adaptable protein–lipid scaffolds controlling MIM biogenesis and its dynamic remodelling. Signal-dependent rearrangements of cristae architecture and MIM fusion events are governed by the dynamin-like GTPase optic atrophy 1 (OPA1). Recent groundbreaking structural insights into these nano-machineries have considerably advanced our understanding of the functional architecture of mitochondria. In this Review, we discuss how the MIM-shaping machineries cooperate to control cristae and crista junction dynamics, including MIM fusion, in response to cellular signalling pathways. We also explore how mutations affecting MIM-shaping machineries compromise mitochondrial functions.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"29 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143979572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Histone H1 deamidation regulates DNA double-strand break repair","authors":"Caroline Barranco","doi":"10.1038/s41580-025-00860-1","DOIUrl":"10.1038/s41580-025-00860-1","url":null,"abstract":"Repair of DNA double-strand breaks requires chromatin opening; however, the mechanisms involved were unclear. This work shows that sequential histone deamidation and acetylation modifications induce chromatin decompaction by reducing positive charge at the DNA–nucleosome interface.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 6","pages":"418-418"},"PeriodicalIF":81.3,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fat accumulation in middle-aged male animals","authors":"Kim Baumann","doi":"10.1038/s41580-025-00861-0","DOIUrl":"10.1038/s41580-025-00861-0","url":null,"abstract":"A distinct population of adipose progenitor cells contributes to the accumulation of visceral white adipose tissue in middle-aged male mice.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 6","pages":"417-417"},"PeriodicalIF":81.3,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}