{"title":"Fat cells have long-lasting (epigenetic) memory","authors":"Kim Baumann","doi":"10.1038/s41580-024-00816-x","DOIUrl":"10.1038/s41580-024-00816-x","url":null,"abstract":"Obesity-induced transcriptional and epigenetic alterations persist following weight loss, which negatively affects adipose tissue function and increases the propensity to regain weight.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 1","pages":"7-7"},"PeriodicalIF":81.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shifaan Thowfeequ, Courtney W. Hanna, Shankar Srinivas
{"title":"Origin, fate and function of extraembryonic tissues during mammalian development","authors":"Shifaan Thowfeequ, Courtney W. Hanna, Shankar Srinivas","doi":"10.1038/s41580-024-00809-w","DOIUrl":"https://doi.org/10.1038/s41580-024-00809-w","url":null,"abstract":"<p>Extraembryonic tissues have pivotal roles in morphogenesis and patterning of the early mammalian embryo. Developmental programmes mediated through signalling pathways and gene regulatory networks determine the sequence in which fate determination and lineage commitment of extraembryonic tissues take place, and epigenetic processes allow the memory of cell identity and state to be sustained throughout and beyond embryo development, even extending across generations. In this Review, we discuss the molecular and cellular mechanisms necessary for the different extraembryonic tissues to develop and function, from their initial specification up until the end of gastrulation, when the body plan of the embryo and the anatomical organization of its supporting extraembryonic structures are established. We examine the interaction between extraembryonic and embryonic tissues during early patterning and morphogenesis, and outline how epigenetic memory supports extraembryonic tissue development.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"19 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142763468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Condensates trail the nucleus","authors":"Lisa Heinke","doi":"10.1038/s41580-024-00814-z","DOIUrl":"10.1038/s41580-024-00814-z","url":null,"abstract":"Zhao et al. describe how nuclear deformation during confined cell migration affects chromatin organization and biomolecular condensates. Chromatin heterogeneity in the trailing nuclear half creates a permissive environment for condensate formation, with potential roles in nuclear mechanics and chromatin interactions.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 1","pages":"9-9"},"PeriodicalIF":81.3,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Telomere function and regulation from mouse models to human ageing and disease","authors":"Corey Jones-Weinert, Laura Mainz, Jan Karlseder","doi":"10.1038/s41580-024-00800-5","DOIUrl":"https://doi.org/10.1038/s41580-024-00800-5","url":null,"abstract":"<p>Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal–Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new ‘humanized’ mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.</p>","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"19 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142753112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three decades of protein-fragment complementation","authors":"Stephen W. Michnick","doi":"10.1038/s41580-024-00813-0","DOIUrl":"10.1038/s41580-024-00813-0","url":null,"abstract":"This year marks the 30th anniversary of the publication of a novel approach to measuring protein–protein interactions (PPIs) in living cells, called the ubiquitin-based split-protein sensor (USPS), the inspiration for the protein-fragment complementation assays (PCAs) that followed. Here I provide a brief history of PCAs and discuss advances in their applications and possible future developments. Stephen Michnick provides a brief history of protein-fragment complementation — an approach to studying protein–protein interactions in living cells — and discusses advances in its applications and possible future developments.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 1","pages":"3-4"},"PeriodicalIF":81.3,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How proteins sense their cellular environment","authors":"Monika Fuxreiter","doi":"10.1038/s41580-024-00812-1","DOIUrl":"https://doi.org/10.1038/s41580-024-00812-1","url":null,"abstract":"The cellular environment is critical to protein function. How is information from many cellular components decoded in order to fine-tune biological activity? New models of biomolecular recognition raise the possibility that proteins engage in specific, yet fuzzy, interactions with their functional partners, which can provide a readout mechanism of the cellular context. Manipulating the cellular context to control protein function offers new therapeutic opportunities. In this Comment article, Monika Fuxreiter discusses possible roles of dynamic, fuzzy protein interactions and their importance in changing cellular environments.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142735584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploiting cell cycle-dependent dephosphorylation for mitosis-specific protein recruitment","authors":"Xiaofu Cao","doi":"10.1038/s41580-024-00808-x","DOIUrl":"10.1038/s41580-024-00808-x","url":null,"abstract":"In this Tools of the Trade article, Cao (Baskin lab) discusses the development of MARS, which enables mitosis-specific recruitment of enzymes to the plasma membrane, exploiting the cell cycle’s natural regulation of PLEKHA5 phosphorylation.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 1","pages":"5-5"},"PeriodicalIF":81.3,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan Sinclair Paterson, Palesa Petunia Madupe, Enrico Cappellini
{"title":"Paleoproteomics sheds light on million-year-old fossils","authors":"Ryan Sinclair Paterson, Palesa Petunia Madupe, Enrico Cappellini","doi":"10.1038/s41580-024-00803-2","DOIUrl":"10.1038/s41580-024-00803-2","url":null,"abstract":"It is now well established that ancient proteins endure, and remain informative, much longer than DNA. Accordingly, sequencing of ancient proteins is currently the only viable methodology for retrieving the genetic data required to resolve evolutionary relations between vertebrate species that disappeared millions of years ago. Ancient proteins can provide phylogenetic information at a timescale that supersedes ancient DNA. Paleoproteomics could thus provide invaluable evolutionary insights, including into human evolution.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 1","pages":"1-2"},"PeriodicalIF":81.3,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Connecting cells through TNT","authors":"Lisa Heinke","doi":"10.1038/s41580-024-00811-2","DOIUrl":"10.1038/s41580-024-00811-2","url":null,"abstract":"Tunnelling nanotubes, which are actin-based protrusions different from filopodia and cytokinetic bridges, connect cells in the zebrafish embryo, enabling the transport of proteins and organelles.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"26 1","pages":"6-6"},"PeriodicalIF":81.3,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RNA communication between organisms inspires innovative eco-friendly strategies for disease control","authors":"Rachael Hamby, Qiang Cai, Hailing Jin","doi":"10.1038/s41580-024-00807-y","DOIUrl":"https://doi.org/10.1038/s41580-024-00807-y","url":null,"abstract":"Evidence shows that RNA trafficking is a key communication mechanism across kingdoms and species, but how RNAs are secreted and trafficked and how they function within the recipient organisms remain unclear. Here, we discuss how understanding inter-organismal RNA communication can assist in disease management in both agriculture and medicine. Cross-species host–pathogen or mutualistic RNA communication, especially through extracellular vesicles, can have important applications, including gene silencing in agriculture and RNA-based therapeutics.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"7 1","pages":""},"PeriodicalIF":112.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}