{"title":"Lysosomal membrane homeostasis and its importance in physiology and disease.","authors":"Maja Radulovic,Chonglin Yang,Harald Stenmark","doi":"10.1038/s41580-025-00873-w","DOIUrl":null,"url":null,"abstract":"Lysosomes are membranous organelles that are crucial for cell function and organ physiology. Serving as the terminal stations of the endocytic pathway, lysosomes have fundamental roles in the degradation of endogenous and exogenous macromolecules and particles as well as damaged or superfluous organelles. Moreover, the lysosomal membrane is a docking and activation platform for several signalling components, including mTOR complex 1 (mTORC1), which orchestrates metabolic signalling in the cell. The integrity of their membrane is crucial for lysosomes to function as hubs for the regulation of cell metabolism. Various agents, including pathogens, nanoparticles and drugs, can compromise lysosomal membrane integrity. Membrane permeabilization causes leakage of proteases and cations into the cytosol, which can induce cell death pathways and innate immunity signalling. Multiple pathways repair damaged lysosomes, and severely damaged lysosomes are degraded by an autophagic process, lysophagy. Moreover, lysosome damage activates transcriptional programmes that orchestrate lysosome biogenesis to replenish the cellular lysosome pool. In this Review, we discuss recent insights into the mechanisms that ensure the maintenance of lysosomal membrane homeostasis, including novel mechanisms of lysosomal membrane repair and the interplay between lysosome damage, repair, lysophagy and lysosome biogenesis. We highlight the importance of lysosomal membrane homeostasis in cell function, physiology, disease and ageing, and discuss the potential for therapeutic exploitation of lysosomal membrane permeabilization.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"15 1","pages":""},"PeriodicalIF":90.2000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41580-025-00873-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lysosomes are membranous organelles that are crucial for cell function and organ physiology. Serving as the terminal stations of the endocytic pathway, lysosomes have fundamental roles in the degradation of endogenous and exogenous macromolecules and particles as well as damaged or superfluous organelles. Moreover, the lysosomal membrane is a docking and activation platform for several signalling components, including mTOR complex 1 (mTORC1), which orchestrates metabolic signalling in the cell. The integrity of their membrane is crucial for lysosomes to function as hubs for the regulation of cell metabolism. Various agents, including pathogens, nanoparticles and drugs, can compromise lysosomal membrane integrity. Membrane permeabilization causes leakage of proteases and cations into the cytosol, which can induce cell death pathways and innate immunity signalling. Multiple pathways repair damaged lysosomes, and severely damaged lysosomes are degraded by an autophagic process, lysophagy. Moreover, lysosome damage activates transcriptional programmes that orchestrate lysosome biogenesis to replenish the cellular lysosome pool. In this Review, we discuss recent insights into the mechanisms that ensure the maintenance of lysosomal membrane homeostasis, including novel mechanisms of lysosomal membrane repair and the interplay between lysosome damage, repair, lysophagy and lysosome biogenesis. We highlight the importance of lysosomal membrane homeostasis in cell function, physiology, disease and ageing, and discuss the potential for therapeutic exploitation of lysosomal membrane permeabilization.
期刊介绍:
Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.