{"title":"Preparation of cubic liquid crystal nanoparticles of puerarin and its protective effect on ischemic stroke","authors":"Jingbao Chen MD , Yuhang Xu MD , Yue Liu MD , Yun Meng MD , Long Wu MD , Wenxuan Cao MD , Dayuan Jiang MD , Xiaoqin Chu PhD","doi":"10.1016/j.nano.2024.102786","DOIUrl":"10.1016/j.nano.2024.102786","url":null,"abstract":"<div><div>The low oral bioavailability of puerarin (Pur) affects its efficacy. Preparation of puerarin cubic liquid crystal nanoparticles (Pur-Cub) enhances the protective effect of Pur against ischemic stroke (IS) by increasing its bioavailability. The average particle size, PDI, and zeta potential of Pur-Cub were 274.70 ± 16.20 nm, 0.24 ± 0.05 and −25.30 ± 2.34 mV, respectively. Polarized light microscopy (PLM) and Small angle X-ray diffraction (SAXS) identified Pur-Cub as a cubic phase (Pn3m). The in vitro release of Pur-Cub was fast and then slow, in accordance with the biphasic kinetic equation. Pur-Cub increased the penetration of Pur in the intestine (mainly the duodenum) and significantly improved the bioavailability of Pur in the blood (304.16 %) and its distribution in the brain (1.69-fold) compared to Pur suspension. Pur-Cub narrowed down cerebral infarcts and significantly reduced levels of TNF-α, IL-1β, and IL-6 in a rat model of middle cerebral artery occlusion (MCAO).</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102786"},"PeriodicalIF":4.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Jakub Kęsik PhD , Wiesław Paja PhD , Pawel Jakubczyk Prof. , Maryna Khalavka PhD , Piotr Terlecki Prof. , Marek Iłżecki PhD. , Wioletta Rzad MSc , Joanna Depciuch PhD
{"title":"Determination of spectroscopy marker of atherosclerotic carotid stenosis using FTIR-ATR combined with machine learning and chemometrics analyses","authors":"Jan Jakub Kęsik PhD , Wiesław Paja PhD , Pawel Jakubczyk Prof. , Maryna Khalavka PhD , Piotr Terlecki Prof. , Marek Iłżecki PhD. , Wioletta Rzad MSc , Joanna Depciuch PhD","doi":"10.1016/j.nano.2024.102788","DOIUrl":"10.1016/j.nano.2024.102788","url":null,"abstract":"<div><div>Atherosclerotic carotid stenosis (ACS) is a recognized risk factor for ischemic stroke. Currently, the gold diagnostic standard is Doppler ultrasound, the results of which do not provide certainty whether a given person should be qualified for surgery or not, because in some patients, carotid artery stenosis, for example at the level of 70 %, does not cause ischemic stroke in others yes. Therefore, there is a need for new methods that will clearly indicate the marker qualifying the patient for surgery. In this article we used Fourier Transform InfraRed Attenuated Total Reflectance (FTIR-ATR) spectra of serum collected from healthy and patients suffering from ACS, which had surgery were analyzed by machine learning and Principal Component Analysis (PCA) to determine chemical differences and spectroscopy marker of ACS. PCA demonstrated clearly differentiation between serum collected from healthy and non-healthy patients. Obtained results showed that in serum collected from ACS patients, higher absorbances of PO<sup>2−</sup> stretching symmetric, CH<sub>2</sub> and CH<sub>3</sub> symmetric and asymmetric and amide I vibrations were noticed than in control group. Moreover, lack of peak at 1106 cm<sup>−1</sup> was observed in spectrum of serum from non-control group. As a result of spectral shifts analysis was found that the most important role in distinguishing between healthy and unhealthy patients is played by FTIR ranges caused by vibrations of PO<sup>2−</sup> phospholipids, amides III, II and C<img>O lipid vibrations. Continuing, peaks at 1636 cm<sup>−1</sup> and 2963 cm<sup>−1</sup> were proposed as a potential spectroscopy markers of ACS. Finally, accuracy of obtained results higher than 90 % suggested, that FTIR-ATR can be used as an additional diagnostic tool in ACS qualifying for surgery.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102788"},"PeriodicalIF":4.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Iaroslav Gnilitskyi PhD , Leonid Dolgov PhD , Aile Tamm PhD , Ana Maria Ferraria PhD , Kateryna Diedkova PhD , Sergei Kopanchuk PhD , Yaroslav Tsekhmister PhD , Santa Veiksina PhD , Vincent Polewczyk PhD , Maksym Pogorielov PhD
{"title":"Enhanced osteointegration and osteogenesis of osteoblast cells by laser-induced surface modification of Ti implants","authors":"Iaroslav Gnilitskyi PhD , Leonid Dolgov PhD , Aile Tamm PhD , Ana Maria Ferraria PhD , Kateryna Diedkova PhD , Sergei Kopanchuk PhD , Yaroslav Tsekhmister PhD , Santa Veiksina PhD , Vincent Polewczyk PhD , Maksym Pogorielov PhD","doi":"10.1016/j.nano.2024.102785","DOIUrl":"10.1016/j.nano.2024.102785","url":null,"abstract":"<div><div>Dental and orthopedic implants have become routine medical technologies for tooth replacement and bone fixation. Despite significant progress in implantology, achieving sufficient osseointegration remains a challenge, often leading to implant failure over the long term. Nanotechnology offers the potential to mimic the natural patterns of living tissues, providing a promising platform for tissue engineering and implant surface design. Among the various methods for developing nanostructures, High-Regular Laser-Induced Periodic Surface Structures (HR-LIPSS) techniques stand out for their ability to fabricate highly ordered nanostructures with excellent long-range repeatability and production efficiency. In this study, we utilized an innovative technical approach to generate traditional laser-induced superficial LIPSS nanostructures, followed by detailed surface analysis using classical microscopy and physicochemical methods. Our findings demonstrate for the first time that nanostructured LIPSS surfaces can significantly enhance cell adhesion and proliferation while providing an optimal environment for cell metabolism. Given the high reproducibility, low cost, and potential of HR-LIPSS techniques to support cell growth and differentiation, this novel technology has the potential to impact both the industrial development of new implants and clinical outcomes after implantation.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102785"},"PeriodicalIF":4.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142292041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa Schiavon MSc , Sara Rezzola PhD , Erica Filippi MSc , Marta Turati PhD , Sofia Parrasia PhD , Simone Bernardotto MSc , Martina Stocco MSc , Ildikò Szabò PhD , Andrea Mattarei PhD , Roberto Ronca PhD , Margherita Morpurgo PhD
{"title":"A novel mertansine conjugate for acid-reversible targeted drug delivery validated through the Avidin-Nucleic-Acid-NanoASsembly platform","authors":"Elisa Schiavon MSc , Sara Rezzola PhD , Erica Filippi MSc , Marta Turati PhD , Sofia Parrasia PhD , Simone Bernardotto MSc , Martina Stocco MSc , Ildikò Szabò PhD , Andrea Mattarei PhD , Roberto Ronca PhD , Margherita Morpurgo PhD","doi":"10.1016/j.nano.2024.102784","DOIUrl":"10.1016/j.nano.2024.102784","url":null,"abstract":"<div><p>In targeted cancer therapy, antibody-drug-conjugates using mertansine (DM1)-based cytotoxic compounds rely on covalent bonds for drug conjugation. Consequently, the cytotoxic DM1 derivative released upon their proteolytic digestion is up to 1000-fold less potent than DM1 and lacks a bystander effect. To overcome these limitations, we developed a DM1 derivative (keto-DM1) suitable for bioconjugation through an acid-reversible hydrazone bond. Its acid-reversible hydrazone conjugate with biotin (B-Hz-DM1) was generated and tested for efficacy using the cetuximab-targeted Avidin-Nucleic-Acid-NanoASsembly (ANANAS) nanoparticle (NP) platform.</p><p>NP-tethered B-Hz-DM1 is stable at neutral pH and releases its active moiety only in endosome/lysosome mimicking acidic pH. <em>In vitro</em>, the NP/Cetux/B-Hz-DM1 assembly showed high potency on MDA-MB231 breast cancer cells. <em>In vivo</em> both B-Hz-DM1 and NP/Cetux/B-Hz-DM1 reduced tumor growth. A significantly major effect was exerted by the nanoformulation, associated with an increased <em>in situ</em> tumor cell death. Keto-DM1 is a promising acid-reversible mertansine derivative for targeted delivery in cancer therapy.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102784"},"PeriodicalIF":4.2,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142140607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Wei PhD , Gang Zhao PhD , Ningrong Chen PhD , Xiaoke Xu BS , Haochen Jiang BS , Daniel Tran BS , Evan Glissmeyer BS , Mary B. Goldring PhD , Steven R. Goldring MD , Dong Wang PhD
{"title":"Identification of formulation parameters that affect the analgesic efficacy of ProGel-Dex – A thermoresponsive polymeric dexamethasone prodrug for chronic arthritis pain relief","authors":"Xin Wei PhD , Gang Zhao PhD , Ningrong Chen PhD , Xiaoke Xu BS , Haochen Jiang BS , Daniel Tran BS , Evan Glissmeyer BS , Mary B. Goldring PhD , Steven R. Goldring MD , Dong Wang PhD","doi":"10.1016/j.nano.2024.102782","DOIUrl":"10.1016/j.nano.2024.102782","url":null,"abstract":"<div><p>The relief of joint pain is one of the main objectives in the clinical management of arthritis. Although significant strides have been made in improving management of rheumatoid and related forms of inflammatory arthritis, there are still major unmet needs for therapies that selectively provide potent, sustained and safe joint pain relief, especially among patients with osteoarthritis (OA), the most common form of arthritis. We have recently developed ProGel-Dex, an <em>N</em>-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based thermoresponsive dexamethasone (Dex) prodrug, which forms a hydrogel upon intra-articular administration and provides sustained improvement in pain-related behavior and inflammation in rodent models of arthritis. The focus of the present study was to investigate the impact of ProGel-Dex formulation parameters on its physicochemical properties and <em>in vivo</em> efficacy. The results of this study provide essential knowledge for the future design of ProGel-Dex that can provide more effective, sustained and safe relief of joint pain and inflammation.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102782"},"PeriodicalIF":4.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edward Cedrone B.S. , Abbas Ishaq Ph.D. , Emma Grabarnik Ph.D. , Elijah Edmondson DVM., Ph.D. , Sarah Skoczen M.S. , Barry W. Neun B.S. , Matthew Freer Ph.D. , Siannah Shuttleworth M.Res. , Lisbet Sviland M.D., Ph.D. , Anne Dickinson Ph.D. , Marina A. Dobrovolskaia Ph.D.
{"title":"In vitro assessment of nanomedicines' propensity to cause palmar-plantar erythrodysesthesia: A Doxil vs. doxorubicin case study","authors":"Edward Cedrone B.S. , Abbas Ishaq Ph.D. , Emma Grabarnik Ph.D. , Elijah Edmondson DVM., Ph.D. , Sarah Skoczen M.S. , Barry W. Neun B.S. , Matthew Freer Ph.D. , Siannah Shuttleworth M.Res. , Lisbet Sviland M.D., Ph.D. , Anne Dickinson Ph.D. , Marina A. Dobrovolskaia Ph.D.","doi":"10.1016/j.nano.2024.102780","DOIUrl":"10.1016/j.nano.2024.102780","url":null,"abstract":"<div><p>Palmar-plantar erythrodysesthesia (PPE), also known as hand and foot syndrome, is a condition characterized by inflammation-mediated damage to the skin on the palms and soles of the hands and feet. PPE limits the successful therapeutic applications of anticancer drugs. However, identifying this toxicity during preclinical studies is challenging due to the lack of accurate in vitro and in vivo animal-based models. Therefore, there is a need for reliable models that would allow the detection of this toxicity early during the drug development process. Herein, we describe the use of an in vitro skin explant assay to assess traditional DXR, Doxil reference listed drug (RLD) and two generic PEGylated liposomal DXR formulations for their abilities to cause inflammation and skin damage. We demonstrate that the results obtained with the in vitro skin explant assay model for traditional DXR and Doxil correlate with the clinical data.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102780"},"PeriodicalIF":4.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electrostatically self-assembled gold nanorods with sulfated hyaluronic acid for targeted photothermal therapy for CD44-positive tumors","authors":"Toshie Tanaka PhD, Kohei Sano PhD, Rin Kawakami BS, Shiho Tanaka BS, Masayuki Munekane PhD, Toshihide Yamasaki PhD, Takahiro Mukai PhD","doi":"10.1016/j.nano.2024.102781","DOIUrl":"10.1016/j.nano.2024.102781","url":null,"abstract":"<div><p>Gold nanorods (GNR) produce heat upon irradiation with near-infrared light, enabling a tumor-targeted photothermal therapy. In this study, we prepared GNR coated with sulfated hyaluronic acid (sHA) with a binding affinity for CD44 via electrostatic interactions to deliver GNR to tumors efficiently and stably, and evaluated their usefulness for photothermal therapy. Cationic GNR modified with trimethylammonium groups electrostatically interacted with native HA or sHA with varying degrees of sulfation to form complexes. While GNR/HA was unstable in saline, GNR/sHA maintained the absorbance peak in the near-infrared region, particularly for GNR/sHA with higher degrees of sulfation. GNR/sHA exhibited an intense photothermal effect upon irradiation with near-infrared light. Furthermore, in vitro and in vivo studies revealed that GNR coated with sHA containing approximately 1.2 sulfated groups per HA unit could accumulate in CD44-positive tumors via an HA-specific pathway. These findings indicate the effectiveness of GNR/sHA as a tumor-targeted photothermal therapeutic agent.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102781"},"PeriodicalIF":4.2,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficacy and safety of a 0.05 % nanoencapsulated imiquimod hydrogel for the treatment of actinic cheilitis: Drug release analysis and clinical study","authors":"Eduardo Liberato da Silva DDS, MSC , Erick Souza Pedraça DDS, MSc , Arthur Pias Salgueiro DDS, PhD , Rafaela Pletsch Gazzi MSc , Júlia Silveira Nunes DDS, MSc , Juliano Cavagni DDS, PhD , Marco Antônio Trevizani Martins DDS, PhD , Pantelis Varvaki Rados DDS, PhD , Adriana Raffin Pohlmann MSc, PhD , Silvia Stanisçuaski Guterres MSc, PhD , Luiza Abrahão Frank MSc, PhD , Fernanda Visioli DDS, PhD","doi":"10.1016/j.nano.2024.102779","DOIUrl":"10.1016/j.nano.2024.102779","url":null,"abstract":"<div><p>Actinic cheilitis (AC) is a lip disorder, with no standard treatment. Imiquimod (IMIQ) is an immunomodulator that treat precancerous lesions; however, its commercial form causes severe adverse effects. This study aimed to assess IMQ release from a chitosan hydrogel containing 0.05 % nanoencapsulated (NANO) imiquimod (IMIQ-0.05 %-NANO) and its efficacy in AC treatment. The hydrogels were prepared by incorporating chitosan into polymeric nanocapsules (NCimiq) loaded with IMQ, produced using the interfacial deposition of preformed polymer method. IMQ release was evaluated using automated Franz Cells. A triple-blind randomized controlled trial (49 subjects) compared the efficacy of: IMIQ-0.05 %-NANO, 5 % free imiquimod (IMIQ-5 %), 0.05 % free imiquimod (IMIQ-0.05 %), and placebo hydrogel. The IMIQ-NANO-0.05 % and IMIQ-5 % groups exhibited significantly higher rates of clinical improvement (<em>p</em> < 0.05); however, the IMIQ-5 % group experienced more adverse effects (92.3 % of subjects) compared to other groups (p < 0.05). In conclusion, in the studied sample, IMIQ-NANO-0.05 % was a safe and effective option to treat AC.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102779"},"PeriodicalIF":4.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust aptamer-targeted CRISPR/Cas9 delivery using mesenchymal stem cell membrane –liposome hybrid: BIRC5 gene knockout against melanoma","authors":"Asma Ghaemi PhD , Khalil Abnous PhD , Seyed Mohammad Taghdisi PhD , Masoumeh Vakili-Azghandi PhD , Mohammad Ramezani PhD , Mona Alibolandi PhD","doi":"10.1016/j.nano.2024.102778","DOIUrl":"10.1016/j.nano.2024.102778","url":null,"abstract":"<div><p>In this study, a platform was fabricated by combining a cationic lipid, 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP) with mesenchymal stem cell membrane (MSCM) to produce a positively charged hybrid vesicle. The prepared hybrid vesicle was used to condense BIRC5 CRISPR/Cas9 plasmid for survivin (BIRC5) gene editing. The Sgc8-c aptamer (against protein tyrosine kinase 7) was then attached to the surface of the prepared NPs through electrostatic interactions. In this regard, melanoma cancer cells (B16F0 cell line) overexpressing PTK7 receptor could be targeted. Investigations were conducted on this system to evaluate its transfection efficiency, cellular toxicity, and therapeutic performance in preclinical stage using B16F0 tumor bearing C57BL/6 J mice. The results verified the superiority of the Hybrid/ BIRC5 compared to Liposome/ BIRC5 in terms of cellular toxicity and transfection efficiency. The cells exposure to Hybrid/BIRC5 significantly enhanced cytotoxicity. Moreover, cells treated with Apt-Hybrid/BIRC5 showed higher anti-proliferation activity toward PTK7-positive B16F0 cancer cells than that of the PKT7-negative CHO cell line. The active tumor targeting nanoparticles increased the cytotoxicity through down-regulation of BIRC5 expression as confirmed by Western blot analysis. In preclinical stage, Apt-Hybrid/BIRC5 showed remarkable tumor growth suppression toward B16F0 tumorized mice.</p><p>Thus, our study suggested that genome editing for BIRC5 through the CRISPR/Cas9 system could provide a potentially safe approach for melanoma cancer therapy and has great potential for clinical translation.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"62 ","pages":"Article 102778"},"PeriodicalIF":4.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141913396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}