Nanomedicine : nanotechnology, biology, and medicine最新文献

筛选
英文 中文
Determination diabetes mellitus disease markers in tear fluid by photothermal AFM-IR analysis 光热AFM-IR法测定泪液中糖尿病疾病标志物。
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2025-02-01 DOI: 10.1016/j.nano.2025.102803
Daria Kondrakhova MSc , Miriam Unger PhD , Hartmut Stadler PhD , Katarína Zakuťanská PhD , Natália Tomašovičová PhD , Vladimíra Tomečková PhD , Jakub Horák PhD , Tatiana Kimákova PhD , Vladimír Komanický PhD
{"title":"Determination diabetes mellitus disease markers in tear fluid by photothermal AFM-IR analysis","authors":"Daria Kondrakhova MSc ,&nbsp;Miriam Unger PhD ,&nbsp;Hartmut Stadler PhD ,&nbsp;Katarína Zakuťanská PhD ,&nbsp;Natália Tomašovičová PhD ,&nbsp;Vladimíra Tomečková PhD ,&nbsp;Jakub Horák PhD ,&nbsp;Tatiana Kimákova PhD ,&nbsp;Vladimír Komanický PhD","doi":"10.1016/j.nano.2025.102803","DOIUrl":"10.1016/j.nano.2025.102803","url":null,"abstract":"<div><div>The tear fluids from three healthy individuals and three patients with diabetes mellitus were examined using atomic force microscopy-infrared spectroscopy (AFM-IR) and Fourier transform infrared spectroscopy (FTIR). The dried tear samples showed different surface morphologies: the control sample had a dense network of heart-shaped dendrites, while the diabetic sample had fern-shaped dendrites. By using the AFM-IR technique we identified spatial distribution of constituents, indicating how diabetes affects the structural characteristics of dried tears. FTIR showed that the dendritic structures gradually disappeared over time due to glucose-induced lysozyme damage. The tear fluid from diabetes mellitus patients has a higher concentration of glucose, which accelerates the breakdown of lysozyme and, as a result, the quick loss of the dendritic structure. Our study shows that analysis of dry tear fluid can be promising technique for the detection of glycated proteins that reveal long lasting hyperglycemia and diabetes mellitus.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"64 ","pages":"Article 102803"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutathione-responsive polypeptide nanogel encapsulates Shikonin for breast cancer therapy 谷胱甘肽反应性多肽纳米凝胶包封紫草素用于乳腺癌治疗。
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2025-02-01 DOI: 10.1016/j.nano.2025.102802
Siqi Li M.Eng, Qingshuang Wang PhD, Zhilin Li B.Eng, Jiahe Zhang B.Eng, Xue Jiang PhD, Shuai Liu M.Eng, Changshun Lu M.Eng, Tianhui Liu M.Eng, Xiangru Feng PhD
{"title":"Glutathione-responsive polypeptide nanogel encapsulates Shikonin for breast cancer therapy","authors":"Siqi Li M.Eng,&nbsp;Qingshuang Wang PhD,&nbsp;Zhilin Li B.Eng,&nbsp;Jiahe Zhang B.Eng,&nbsp;Xue Jiang PhD,&nbsp;Shuai Liu M.Eng,&nbsp;Changshun Lu M.Eng,&nbsp;Tianhui Liu M.Eng,&nbsp;Xiangru Feng PhD","doi":"10.1016/j.nano.2025.102802","DOIUrl":"10.1016/j.nano.2025.102802","url":null,"abstract":"<div><div>Exploiting the unique physiological and biochemical characteristics of the tumor microenvironment, the development of a polypeptide nanogel capable of responding to these specific properties holds great promise as an effective antitumor strategy. In this study, we synthesized a glutathione-responsive (GSH-responsive) methylated poly (ethylene glycol)-poly (phenylalanine)-poly (cystine) block copolymer (mPPC) through one-step ring-opening polymerization. Shikonin (SHK) was encapsulated within nanogel, designated as mPPC/SHK. The biocompatible and safe nature of mPPC facilitated its accumulation at the tumor site through enhanced permeability and retention effect, leading to efficient release of SHK upon stimulation by high concentrations of GSH. As anticipated, the group of mPPC/SHK displayed enhanced efficacy against tumors, resulting in a tumor inhibition rate of 69.97 % in the 4T1 breast cancer model. Overall, this GSH-responsive polypeptide nanogel encapsulating SHK has tremendous potential as a promising biomedical agent for effective tumor nanotherapy.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"64 ","pages":"Article 102802"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142952309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma” [Nanomed.: Nanotechnol. Biol. Med. 14/3 (2018) 713-723] "二硫键桥接透明质酸-生育酚琥珀酸酯的氧化还原反应胶束用于治疗黑色素瘤"[Nanomed.: Nanotechnol. Biol. Med. 14/3 (2018) 713-723]的更正。
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2025-02-01 DOI: 10.1016/j.nano.2025.102807
Junping Xia MS , Yunai Du BS , Liping Huang PhD , Birendra Chaurasiya MS , Jiasheng Tu PhD , Thomas J. Webster PhD , Chunmeng Sun PhD
{"title":"Corrigendum to “Redox-responsive micelles from disulfide bond-bridged hyaluronic acid-tocopherol succinate for the treatment of melanoma” [Nanomed.: Nanotechnol. Biol. Med. 14/3 (2018) 713-723]","authors":"Junping Xia MS ,&nbsp;Yunai Du BS ,&nbsp;Liping Huang PhD ,&nbsp;Birendra Chaurasiya MS ,&nbsp;Jiasheng Tu PhD ,&nbsp;Thomas J. Webster PhD ,&nbsp;Chunmeng Sun PhD","doi":"10.1016/j.nano.2025.102807","DOIUrl":"10.1016/j.nano.2025.102807","url":null,"abstract":"","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"64 ","pages":"Article 102807"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting novel placental homing peptides for targeted drug delivery in breast cancer
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2025-02-01 DOI: 10.1016/j.nano.2025.102805
Abdulaziz A. Alobaid PhD , Harmesh Aojula PhD , Richard A. Campbell PhD , Lynda K. Harris PhD
{"title":"Exploiting novel placental homing peptides for targeted drug delivery in breast cancer","authors":"Abdulaziz A. Alobaid PhD ,&nbsp;Harmesh Aojula PhD ,&nbsp;Richard A. Campbell PhD ,&nbsp;Lynda K. Harris PhD","doi":"10.1016/j.nano.2025.102805","DOIUrl":"10.1016/j.nano.2025.102805","url":null,"abstract":"<div><div>More effective drug formulations are needed to increase the selectivity and efficacy of available chemotherapeutics. We have previously shown that nanoparticles decorated with the tumour homing peptide CGKRK can selectively deliver payloads to the placenta. In this study, we investigated whether two novel placental homing peptides NKGLRNK (NKG) and RSGVAKS (RSG) can be utilized to selectively deliver doxorubicin (DOX) to breast cancer cells. Fluorescence microscopy and flow cytometry showed that NKG and RSG bind to and accumulate in MDA-MB-231 and MCF-7 cells in a time-dependent manner, to a similar extent as CGKRK, but accumulate in healthy MCF-10A cells to a much lesser degree. NKG- and RSG-decorated liposomes facilitated equivalent delivery of DOX to MDA-MB-231 and MCF-7 cells, with a comparable efficacy to CGKRK-decorated liposomes. These findings suggest that NKG and RSG represent novel breast tumour-binding sequences that could be utilized to develop more efficacious targeted breast cancer therapies.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"64 ","pages":"Article 102805"},"PeriodicalIF":4.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143040397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “Exploring the interactions between engineered nanomaterials and immune cells at 3D nano-bio interfaces to discover potent nano-adjuvants” [Nanomed.: Nanotechnol. Biol. Med. 21C (2019) 102037] “在3D纳米生物界面上探索工程纳米材料和免疫细胞之间的相互作用,以发现有效的纳米佐剂”的勘误表[Nanomed]。: Nanotechnol。医学杂志。医学通报,2016,(5):357 - 357。
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2025-01-01 DOI: 10.1016/j.nano.2024.102800
Ronglin Ma MSc , Huizhen Zheng PhD , Qi Liu PhD , Di Wu BS , Wei Li MSc , Shujuan Xu BS , Xiaoming Cai PhD , Ruibin Li PhD
{"title":"Corrigendum to “Exploring the interactions between engineered nanomaterials and immune cells at 3D nano-bio interfaces to discover potent nano-adjuvants” [Nanomed.: Nanotechnol. Biol. Med. 21C (2019) 102037]","authors":"Ronglin Ma MSc ,&nbsp;Huizhen Zheng PhD ,&nbsp;Qi Liu PhD ,&nbsp;Di Wu BS ,&nbsp;Wei Li MSc ,&nbsp;Shujuan Xu BS ,&nbsp;Xiaoming Cai PhD ,&nbsp;Ruibin Li PhD","doi":"10.1016/j.nano.2024.102800","DOIUrl":"10.1016/j.nano.2024.102800","url":null,"abstract":"","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"63 ","pages":"Article 102800"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142780449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model 利用髓核间充质干细胞轻松制备纳米生物活性玻璃功能化混合水凝胶,通过体内大鼠模型提高治疗椎间盘退行性变的再生潜力。
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2025-01-01 DOI: 10.1016/j.nano.2024.102790
Chong Bian Phd , Guangnan Chen MD , Xiangyang Cheng MD, Huijie Gu Phd, Zhongyue Huang MD, Kaifeng Zhou MD
{"title":"Facile fabrication of nano-bioactive glass functionalized blended hydrogel with nucleus pulposus-derived MSCs to improve regeneration potential in treatment of disc degeneration by in vivo rat model","authors":"Chong Bian Phd ,&nbsp;Guangnan Chen MD ,&nbsp;Xiangyang Cheng MD,&nbsp;Huijie Gu Phd,&nbsp;Zhongyue Huang MD,&nbsp;Kaifeng Zhou MD","doi":"10.1016/j.nano.2024.102790","DOIUrl":"10.1016/j.nano.2024.102790","url":null,"abstract":"<div><div>Orthopaedic medicine often treats intervertebral disc degeneration (IVDD), which is caused by nucleus pulposus (NP) tissue damage and mechanical stress. Bioactive glasses (BGs), widely used for bone regeneration, can incorporate therapeutic ions into their network. Manganese (Mn) activates human osteoblast integrins, proliferation, and spreading. The CMnBGNPs-NPMSCs are carboxymethyl cellulose hydrogels functionalized with MnBGsNPs and NP-derived mesenchymal stem cells to treat IVDD. To ensure stability and biocompatibility of CMnBGNPs-NPMSCs were characterized for rheological properties like gelation time and swelling ratio. Gene expression analysis of PAX1, FOXF1, CA12, HBB, and OVOS2 <em>via</em> qRT-PCR further assessed the hydrogel's characteristics. Rat models with induced IVDD had hydrogel-MSC composite injected into their intervertebral discs for <em>in vivo</em> studies. Histological examination, immunohistochemical staining for inflammation and disc regeneration markers, and disc height assessments assessed therapeutic efficacy. CMnBGNPs-NPMSCs show promising results for IVDD treatment, offering a novel therapeutic strategy with clinical implications for degenerative disc diseases.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"63 ","pages":"Article 102790"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One stone, three birds: Construction of Cu/ZIF-8@DSF@GOx/HA nanoplatform for synergistic starvation therapy enhanced chemo−/chemodynamic therapy 一石三鸟:Cu/ZIF-8@DSF@GOx/HA纳米平台的构建,用于协同饥饿治疗增强化疗/化疗动力学治疗。
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2025-01-01 DOI: 10.1016/j.nano.2024.102799
Jing Xia MSc , Guoxin Liu PhD , Chaofan Wang MSc , Zhuo Liu MSc , Fengyu Liu PhD , Hongjuan Li PhD , Yongqian Xu PhD , Shiguo Sun PhD
{"title":"One stone, three birds: Construction of Cu/ZIF-8@DSF@GOx/HA nanoplatform for synergistic starvation therapy enhanced chemo−/chemodynamic therapy","authors":"Jing Xia MSc ,&nbsp;Guoxin Liu PhD ,&nbsp;Chaofan Wang MSc ,&nbsp;Zhuo Liu MSc ,&nbsp;Fengyu Liu PhD ,&nbsp;Hongjuan Li PhD ,&nbsp;Yongqian Xu PhD ,&nbsp;Shiguo Sun PhD","doi":"10.1016/j.nano.2024.102799","DOIUrl":"10.1016/j.nano.2024.102799","url":null,"abstract":"<div><div>Disulfiram (DSF), as a sixpenny drug for the treatment of alcohol dependence, has demonstrated copper-dependent chemotherapy (CT) effects in recent years. However, as the most common modality in clinical treatment, prolonged use of CT will lead to multidrug resistance (MDR). In this work, a versatile and ingenious nanoparticle Cu/ZIF-8@DSF@GOx/HA (CZDGH) was constructed to deliver DSF, Cu<sup>2+</sup> and GOx to tumor cells. Once internalized by tumor cells, GOx depletes glucose blocking the energy supply leading to ST. Then DSF chelates with Cu<sup>2+</sup> in situ to generate CuETs, achieving toxicity-intensified CT, the reduced ATP in this process also inhibits the efflux function of P-gp. In the meantime, Cu<sup>2+</sup> consumes glutathione (GSH) to enhance oxidative stress, and the converted Cu<sup>+</sup> catalyzes internal and external sources of H<sub>2</sub>O<sub>2</sub> into •OH, heightening chemodynamic therapy (CDT). The experimental results demonstrate remarkable multimodal synergistic anticancer effects that overcome MDR.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"63 ","pages":"Article 102799"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-inflammatory and heat shock protein-inhibiting nanoplatform for synergetic cancer chemo/photothermal therapy 抗炎和热休克蛋白抑制纳米平台协同癌症化疗/光热治疗。
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2025-01-01 DOI: 10.1016/j.nano.2024.102801
Yuanying Zhang MSc , Nan Yang MSc , Lingling Wang MSc , Yi Zheng MSc , Ziyi Dong MSc , Jiahui Wu MSc , Gege Zhang MSc , Yanling Zhang MSc , Jianda Qiu MSc , Wenbin Wang PhD , Xianwen Wang PhD , Pingping Liang PhD
{"title":"Anti-inflammatory and heat shock protein-inhibiting nanoplatform for synergetic cancer chemo/photothermal therapy","authors":"Yuanying Zhang MSc ,&nbsp;Nan Yang MSc ,&nbsp;Lingling Wang MSc ,&nbsp;Yi Zheng MSc ,&nbsp;Ziyi Dong MSc ,&nbsp;Jiahui Wu MSc ,&nbsp;Gege Zhang MSc ,&nbsp;Yanling Zhang MSc ,&nbsp;Jianda Qiu MSc ,&nbsp;Wenbin Wang PhD ,&nbsp;Xianwen Wang PhD ,&nbsp;Pingping Liang PhD","doi":"10.1016/j.nano.2024.102801","DOIUrl":"10.1016/j.nano.2024.102801","url":null,"abstract":"<div><div>Photothermal therapy is a novel and promising method for cancer treatment due to its controllable property, noninvasive nature, and high selectivity. Nevertheless, tumor recurrence of inflammatory response and tumor tolerance of heat shock protein over-expression remain serious challenges in current photothermal therapy. Additionally, the high dosage requirement of nanomaterial for optimal imaging and therapeutic effect would result in various side effects, organ excretion burdens, and long-term accumulation in the body. In this work, RD/Qu nanoplatform is designed and prepared with near-infrared (NIR) absorbance, high photothermal conversion efficiency, and great chemotherapy effect for synergetic cancer chemo/photothermal therapy at an ultralow-dose. More importantly, both <em>in vitro</em> and <em>in vivo</em> studies demonstrate that it could decrease the expression of HSP70 to fight hyperthermia tumor tolerance and inhibit inflammatory factor COX-2 to suppress tumor recurrence. Therefore, the RD/Qu nanoparticles show excellent outcome in tumor ablation at a quite low dosage, providing a promising avenue for cancer treatment.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"63 ","pages":"Article 102801"},"PeriodicalIF":4.2,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of aggregated neutrophil extracellular traps in tissues is determining the efficacy of particulate nanoadjuvants 组织中聚集的中性粒细胞胞外陷阱的形成决定了颗粒纳米佐剂的功效
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2024-11-28 DOI: 10.1016/j.nano.2024.102798
Galyna Bila PhD , Valentyn Utka , Roman Grytsko Dr , Volodymyr Vovk Dr , Rostyslav Bilyy Dr, Prof.
{"title":"Formation of aggregated neutrophil extracellular traps in tissues is determining the efficacy of particulate nanoadjuvants","authors":"Galyna Bila PhD ,&nbsp;Valentyn Utka ,&nbsp;Roman Grytsko Dr ,&nbsp;Volodymyr Vovk Dr ,&nbsp;Rostyslav Bilyy Dr, Prof.","doi":"10.1016/j.nano.2024.102798","DOIUrl":"10.1016/j.nano.2024.102798","url":null,"abstract":"<div><div>Neutrophils are essential for innate immunity, using mechanisms like Neutrophil Extracellular Trap (NET) formation to fight pathogens. Aggregated NETs (aggNETs) help resolve inflammation by cleaving pro-inflammatory cytokines, while scattered NETs can exacerbate inflammation, leading to tissue damage. Co-injection of 10 nm nanodiamonds (ND10) with peptide antigens boosts immune responses, including anti-SARS-CoV-2 immunity, due to transient immune responses induced by aggNETs around ND10 particles. Diamond nanoparticles in adjuvant mixtures enhance vaccines, though the optimal dose is uncertain. Our study aimed to find the minimal ND10 amount needed for effective aggNETs formation and a robust immune response with minimal long-term tissue damage. In vivo experiments revealed 1 mg of ND10 per injection significantly enhances immune responses, forming granulomas rich in neutrophil elastase. Lower doses left scattered nanoparticles, insufficient for aggNETs formation. The effective ND10 dose for mice, 1 mg per injection, can be extrapolated to other organisms.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"63 ","pages":"Article 102798"},"PeriodicalIF":4.2,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The nanocrystal-loaded liposome of tanshinone IIA with high drug loading and stability towards efficient liver fibrosis reversion 纳米晶载丹参酮IIA脂质体具有高载药量和稳定性,可有效逆转肝纤维化
IF 4.2 2区 医学
Nanomedicine : nanotechnology, biology, and medicine Pub Date : 2024-11-27 DOI: 10.1016/j.nano.2024.102797
Chunyan Cai BS , Kai Liu MMed , Dejun Yang BS , Jijiao Wu BS , Zhaolei Peng BS , Yulin Wang BS , Jingjing Xi BS , Fan Xie MMed , Xiaofang Li Ph.D
{"title":"The nanocrystal-loaded liposome of tanshinone IIA with high drug loading and stability towards efficient liver fibrosis reversion","authors":"Chunyan Cai BS ,&nbsp;Kai Liu MMed ,&nbsp;Dejun Yang BS ,&nbsp;Jijiao Wu BS ,&nbsp;Zhaolei Peng BS ,&nbsp;Yulin Wang BS ,&nbsp;Jingjing Xi BS ,&nbsp;Fan Xie MMed ,&nbsp;Xiaofang Li Ph.D","doi":"10.1016/j.nano.2024.102797","DOIUrl":"10.1016/j.nano.2024.102797","url":null,"abstract":"<div><div>Tanshinone IIA (TSIIA) is a lipid-soluble pharmacological constituent extracted from the <em>Salvia miltiorrhiza</em> with anti-hepatic fibrosis properties. However, its clinical use has been limited due to its poor water solubility and oral bioavailability. In this paper, we constructed a drug delivery system consisting of a drug nanocrystal core and a liposome shell: TSIIA nanocrystals@liposome (TNC@Lipo). This combination can greatly improve the solubility and bioavailability of poorly water-soluble drugs. TNC@Lipo was prepared by ultrasonic method combined with antisolvent method. In order to obtain the optimal TNC, we optimized the formulation ratio and preparation process of TNC by single-factor experiments. The results showed that TNC@Lipo had higher drug loading (27.86 ± 1.55 %) and superior stability. And TNC@Lipo can significantly reversed CCl<sub>4</sub>-induced liver fibrosis in mice compared with free-TSIIA. In conclusion, this study provides a new approach for the clinical application of TSIIA.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"63 ","pages":"Article 102797"},"PeriodicalIF":4.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142746880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信