{"title":"Challenges and opportunities in exascale fusion simulations","authors":"Marta Garcia-Gasulla, Mervi J. Mantsinen","doi":"10.1038/s42254-025-00830-8","DOIUrl":"10.1038/s42254-025-00830-8","url":null,"abstract":"The challenging computational requirements of nuclear fusion research arise from the multiple timescales and space scales involved in the physics and engineering processes of a fusion device. Owing to the intrinsic and complex interconnections of these processes, the complex multiphysics and multiscale nature of fusion simulations require the capabilities of cutting-edge supercomputers. Advances in supercomputing enable a move towards larger-scale, higher-fidelity full fusion reactor digital models that capture not only the plasma core and edge physics but also interactions with materials and engineering aspects, such as fusion reactor walls and cooling systems. This Perspective discusses the main opportunities that fusion codes face in the transition to the emerging exascale systems and beyond, and the challenges that remain to be overcome. This Perspective provides a brief, opinionated review of the past, present and future of the convergence between supercomputing and fusion simulations. We discuss the progress that has been made, the challenges that have been overcome and those that remain as we move into the post-exascale era.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"355-364"},"PeriodicalIF":39.5,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ludovic Berthier, Giulio Biroli, Lisa Manning, Francesco Zamponi
{"title":"Yielding and plasticity in amorphous solids","authors":"Ludovic Berthier, Giulio Biroli, Lisa Manning, Francesco Zamponi","doi":"10.1038/s42254-025-00833-5","DOIUrl":"10.1038/s42254-025-00833-5","url":null,"abstract":"Disordered media include metallic glasses, colloidal suspensions, granular matter and biological tissues, among others. Their physics offers difficult challenges because it often occurs far from equilibrium, in materials that lack symmetries and that evolve through complex energy landscapes. We review theoretical efforts from recent years to provide microscopic insights into the mechanical properties of amorphous media using approaches from statistical mechanics as unifying frameworks. Our focus is on how amorphous solids become unstable and yield under applied deformations. We cover both the initial regime, corresponding to small deformations of the solid, and the transition between elastic response and plastic flow when the solid yields. We discuss the specific features arising for systems evolving near a jamming transition and extend our discussion to recent studies of the rheology of dense biological and active materials. We emphasize the importance of a unified approach to studying the response to deformation and the yielding instability of a broad range of disordered media. Amorphous materials yield through complex, history-dependent mechanisms involving localized defects and avalanche dynamics. This Review unifies theoretical advances across glasses, foams, biological tissues and active matter, revealing universal features and critical behaviour that govern the transition from elasticity to plastic flow and macroscopic failure.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 6","pages":"313-330"},"PeriodicalIF":39.5,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Chen, Romain Fleury, Pierre Seppecher, Gengkai Hu, Martin Wegener
{"title":"Nonlocal metamaterials and metasurfaces","authors":"Yi Chen, Romain Fleury, Pierre Seppecher, Gengkai Hu, Martin Wegener","doi":"10.1038/s42254-025-00829-1","DOIUrl":"10.1038/s42254-025-00829-1","url":null,"abstract":"The aim of rationally designed composites called metamaterials or metasurfaces is to achieve effective properties that go beyond those of their constituent parts. For periodic architectures, the design can draw on concepts from solid-state physics, such as crystal symmetries, reciprocal space, band structures and Floquet–Bloch eigenfunctions. Recently, nonlocality has emerged as a design paradigm, enabling both static and dynamic properties that are unattainable with a local design. In principle, all material properties described by linear response functions can be nonlocal, but for ordinary solids, local descriptions are mostly good approximations, leaving nonlocal effects as corrections. However, metamaterials and metasurfaces can be designed to go far beyond local behaviour. This Review covers these anomalous behaviours in elasticity, acoustics, electromagnetism, optics and diffusion. In the dynamic regime, nonlocal interactions enable versatile band structure and refraction engineering. In the static regime, they result in large decay lengths of ‘frozen’ evanescent Bloch modes, leading to strong size effects. For zero modes, the decay length diverges. Nonlocality has gained increasing attention in metamaterial and metasurface design. This Review discusses recent advances, focusing on the physical mechanisms of nonlocality that lead to intriguing properties and functions.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 6","pages":"299-312"},"PeriodicalIF":39.5,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neutrinos from explosive transients at the dawn of multi-messenger astronomy","authors":"Irene Tamborra","doi":"10.1038/s42254-025-00828-2","DOIUrl":"10.1038/s42254-025-00828-2","url":null,"abstract":"With the advent of time-domain astronomy and the game-changing next generation of telescopes, we have unprecedented opportunities to explore the most energetic events in our Universe through electromagnetic radiation, gravitational waves and neutrinos. These are elementary particles, which exist in three different flavours and change the latter as they propagate in the dense core of astrophysical sources as well as en route to Earth. To capitalize on existing and upcoming multi-messenger opportunities, it is crucial to understand: (1) the role of neutrinos in explosive transient sources as well as in the synthesis of the elements heavier than iron; (2) the impact of neutrino physics on the multi-messenger observables and (3) the information on the source physics carried by the detectable neutrino signal. In this Review, the status of this exciting and fast-moving field is outlined, focusing on astrophysical sources linked to collapsing massive stars and neutron-star mergers. In the light of the upcoming plethora of multi-messenger data, outstanding open issues concerning the optimization of multi-messenger detection strategies are discussed. Neutrinos have a crucial role in explosive transients, influencing the source dynamics and element synthesis. This Review summarizes our understanding of sources linked to collapsing massive stars and neutron-star mergers, emphasizing multi-messenger detection strategies.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 6","pages":"285-298"},"PeriodicalIF":39.5,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loubnan Abou-Hamdan, Emil Marinov, Peter Wiecha, Philipp del Hougne, Tianyu Wang, Patrice Genevet
{"title":"Programmable metasurfaces for future photonic artificial intelligence","authors":"Loubnan Abou-Hamdan, Emil Marinov, Peter Wiecha, Philipp del Hougne, Tianyu Wang, Patrice Genevet","doi":"10.1038/s42254-025-00831-7","DOIUrl":"10.1038/s42254-025-00831-7","url":null,"abstract":"Photonic neural networks (PNNs), which share the inherent benefits of photonic systems, such as high parallelism and low power consumption, could challenge traditional digital neural networks in terms of energy efficiency, latency and throughput. However, producing scalable photonic artificial intelligence (AI) solutions remains challenging. To make photonic AI models viable, the scalability problem needs to be solved. Large optical AI models implemented on PNNs are only commercially feasible if the advantages of optical computation outweigh the cost of their input–output overhead. In this Perspective, we discuss how field-programmable metasurface technology may become a key hardware ingredient in achieving scalable photonic AI accelerators and how it can compete with current digital electronic technologies. Programmability or reconfigurability is a pivotal component for PNN hardware, enabling in situ training and accommodating non-stationary use cases that require fine-tuning or transfer learning. Co-integration with electronics, 3D stacking and large-scale manufacturing of metasurfaces would significantly improve PNN scalability and functionalities. Programmable metasurfaces could address some of the current challenges that PNNs face and enable next-generation photonic AI technology. Programmable metasurfaces may offer a transformative approach to scalable photonic neural networks by overcoming key hardware limitations. This Perspective explores their potential to enhance energy efficiency, computation speed, and adaptability, positioning them as a promising alternative to traditional digital artificial intelligence hardware.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 6","pages":"331-347"},"PeriodicalIF":39.5,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Colour centres in silicon for scalable quantum networks","authors":"Yertay Zhiyenbayev","doi":"10.1038/s42254-025-00835-3","DOIUrl":"10.1038/s42254-025-00835-3","url":null,"abstract":"Yertay Zhiyenbayev recounts how a 2020 paper that demonstrated isolated colour centres in siilicon for use in quantum optics inspired him to pursue this area of research.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 6","pages":"284-284"},"PeriodicalIF":39.5,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Scientists are workers","authors":"","doi":"10.1038/s42254-025-00832-6","DOIUrl":"10.1038/s42254-025-00832-6","url":null,"abstract":"This International Workers’ Day, we reflect on the role of scientists as workers and call on our readers to collaborate in their communities to improve working conditions for scientists.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 5","pages":"231-231"},"PeriodicalIF":39.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s42254-025-00832-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ravindra Shinde, Claudia Filippi, Anthony Scemama, William Jalby
{"title":"Shifting sands of hardware and software in exascale quantum mechanical simulations","authors":"Ravindra Shinde, Claudia Filippi, Anthony Scemama, William Jalby","doi":"10.1038/s42254-025-00823-7","DOIUrl":"10.1038/s42254-025-00823-7","url":null,"abstract":"The era of exascale computing presents both exciting opportunities and unique challenges for quantum mechanical simulations. Although the transition from petaflops to exascale computing has been marked by a steady increase in computational power, it is accompanied by a shift towards heterogeneous architectures, with graphical processing units (GPUs) in particular gaining a dominant role. The exascale era therefore demands a fundamental shift in software development strategies. This Perspective examines the changing landscape of hardware and software for exascale computing, highlighting the limitations of traditional algorithms and software implementations in light of the increasing use of heterogeneous architectures in high-end systems. We discuss the challenges of adapting quantum chemistry software to these new architectures, including the fragmentation of the software stack, the need for more efficient algorithms (including reduced precision versions) tailored for GPUs, and the importance of developing standardized libraries and programming models. The exascale era, driven by GPU-dominated architectures, demands a shift in quantum simulation software. This Perspective examines algorithm adaptation, software fragmentation, and the need for efficient GPU-optimized methods, standardized libraries and scalable programming models for high-performance quantum simulations.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 7","pages":"378-387"},"PeriodicalIF":39.5,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaowen Hu, Di Zhu, Shengyuan Lu, Xinrui Zhu, Yunxiang Song, Dylan Renaud, Daniel Assumpcao, Rebecca Cheng, C. J. Xin, Matthew Yeh, Hana Warner, Xiangwen Guo, Amirhassan Shams-Ansari, David Barton, Neil Sinclair, Marko Loncar
{"title":"Integrated electro-optics on thin-film lithium niobate","authors":"Yaowen Hu, Di Zhu, Shengyuan Lu, Xinrui Zhu, Yunxiang Song, Dylan Renaud, Daniel Assumpcao, Rebecca Cheng, C. J. Xin, Matthew Yeh, Hana Warner, Xiangwen Guo, Amirhassan Shams-Ansari, David Barton, Neil Sinclair, Marko Loncar","doi":"10.1038/s42254-025-00825-5","DOIUrl":"10.1038/s42254-025-00825-5","url":null,"abstract":"Electro-optics bridges electronics and photonics and serves as a foundation for a wide array of applications from communications and computing to sensing and quantum information. Integrated electro-optic approaches, in particular, enable essential electronic high-speed control for photonics while offering photonic parallelism for electronics. Recent developments in thin-film lithium niobate photonics have advanced its use for electro-optics. This technology offers not only the necessary strong electro-optic coupling but also ultralow optical loss and high microwave bandwidth. Its tight field confinement and compatibility with established nanofabrication techniques allow for excellent reconfigurability and scalability, aiding the creation of devices and systems that were deemed nearly impossible in bulk systems. Building on this platform, various new electro-optic devices1–16 have emerged, which surpass the current state of the art1–9,12–16 and introduce functionalities that previously did not exist3,10,11. Thin-film lithium niobate provides a unique platform to explore various areas of physics, including photonic non-Hermitian synthetic dimensions17–19, active topological physics20,21 and quantum electro-optics15,22–24. In this Review, we present the fundamental principles of electro-optics, drawing connections between fundamental science and state-of-the-art technology. We discuss the accomplishments and prospects of integrated electro-optics enabled by the thin-film lithium niobate platform. The strong electro-optic interaction, low optical loss and high microwave bandwidth of thin-film lithium niobate have enabled applications from computing to quantum information. This Review explores the fundamental principles, recent advances and the future potential of integrated lithium niobate technologies.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 5","pages":"237-254"},"PeriodicalIF":39.5,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photogalvanic effects in non-centrosymmetric halide perovskites","authors":"Joe Briscoe, Jian Shi","doi":"10.1038/s42254-025-00822-8","DOIUrl":"10.1038/s42254-025-00822-8","url":null,"abstract":"Photogalvanic effects are characterized by the presence of light-polarization-dependent non-zero short circuit photocurrent and non-zero open circuit voltage in junction-free bulk non-centrosymmetric semiconductors and metals and have been attributed to the non-trivial Berry parameters of matter. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites demonstrate a coexistence of excellent semiconducting properties, switchable or tunable Berry parameters and spin–momentum locking, and strong spin–orbit coupling, making them an ideal model system to explore the photogalvanic effects, and its use in characterizing topological properties, and to develop novel devices. In this Perspective, we describe various mechanisms to break inversion symmetry in halide perovskites and present the theory and mechanisms of the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We discuss the roles of symmetry, strain, chemistry, interface and electric polarization on the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We present the key opportunities and challenges of designing and harnessing photogalvanic effects in non-centrosymmetric halide perovskites for unconventional devices for spin computing, sensing and solar energy applications. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites are an ideal model system to explore the photogalvanic effects. This Perspective discusses the opportunities and challenges of designing and harnessing photogalvanic effects in these materials towards unconventional devices for spin computing, sensing and solar energy applications.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 5","pages":"270-279"},"PeriodicalIF":39.5,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145123671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}