Yaowen Hu, Di Zhu, Shengyuan Lu, Xinrui Zhu, Yunxiang Song, Dylan Renaud, Daniel Assumpcao, Rebecca Cheng, C. J. Xin, Matthew Yeh, Hana Warner, Xiangwen Guo, Amirhassan Shams-Ansari, David Barton, Neil Sinclair, Marko Loncar
{"title":"薄膜铌酸锂的集成电光学","authors":"Yaowen Hu, Di Zhu, Shengyuan Lu, Xinrui Zhu, Yunxiang Song, Dylan Renaud, Daniel Assumpcao, Rebecca Cheng, C. J. Xin, Matthew Yeh, Hana Warner, Xiangwen Guo, Amirhassan Shams-Ansari, David Barton, Neil Sinclair, Marko Loncar","doi":"10.1038/s42254-025-00825-5","DOIUrl":null,"url":null,"abstract":"Electro-optics bridges electronics and photonics and serves as a foundation for a wide array of applications from communications and computing to sensing and quantum information. Integrated electro-optic approaches, in particular, enable essential electronic high-speed control for photonics while offering photonic parallelism for electronics. Recent developments in thin-film lithium niobate photonics have advanced its use for electro-optics. This technology offers not only the necessary strong electro-optic coupling but also ultralow optical loss and high microwave bandwidth. Its tight field confinement and compatibility with established nanofabrication techniques allow for excellent reconfigurability and scalability, aiding the creation of devices and systems that were deemed nearly impossible in bulk systems. Building on this platform, various new electro-optic devices1–16 have emerged, which surpass the current state of the art1–9,12–16 and introduce functionalities that previously did not exist3,10,11. Thin-film lithium niobate provides a unique platform to explore various areas of physics, including photonic non-Hermitian synthetic dimensions17–19, active topological physics20,21 and quantum electro-optics15,22–24. In this Review, we present the fundamental principles of electro-optics, drawing connections between fundamental science and state-of-the-art technology. We discuss the accomplishments and prospects of integrated electro-optics enabled by the thin-film lithium niobate platform. The strong electro-optic interaction, low optical loss and high microwave bandwidth of thin-film lithium niobate have enabled applications from computing to quantum information. This Review explores the fundamental principles, recent advances and the future potential of integrated lithium niobate technologies.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 5","pages":"237-254"},"PeriodicalIF":39.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated electro-optics on thin-film lithium niobate\",\"authors\":\"Yaowen Hu, Di Zhu, Shengyuan Lu, Xinrui Zhu, Yunxiang Song, Dylan Renaud, Daniel Assumpcao, Rebecca Cheng, C. J. Xin, Matthew Yeh, Hana Warner, Xiangwen Guo, Amirhassan Shams-Ansari, David Barton, Neil Sinclair, Marko Loncar\",\"doi\":\"10.1038/s42254-025-00825-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-optics bridges electronics and photonics and serves as a foundation for a wide array of applications from communications and computing to sensing and quantum information. Integrated electro-optic approaches, in particular, enable essential electronic high-speed control for photonics while offering photonic parallelism for electronics. Recent developments in thin-film lithium niobate photonics have advanced its use for electro-optics. This technology offers not only the necessary strong electro-optic coupling but also ultralow optical loss and high microwave bandwidth. Its tight field confinement and compatibility with established nanofabrication techniques allow for excellent reconfigurability and scalability, aiding the creation of devices and systems that were deemed nearly impossible in bulk systems. Building on this platform, various new electro-optic devices1–16 have emerged, which surpass the current state of the art1–9,12–16 and introduce functionalities that previously did not exist3,10,11. Thin-film lithium niobate provides a unique platform to explore various areas of physics, including photonic non-Hermitian synthetic dimensions17–19, active topological physics20,21 and quantum electro-optics15,22–24. In this Review, we present the fundamental principles of electro-optics, drawing connections between fundamental science and state-of-the-art technology. We discuss the accomplishments and prospects of integrated electro-optics enabled by the thin-film lithium niobate platform. The strong electro-optic interaction, low optical loss and high microwave bandwidth of thin-film lithium niobate have enabled applications from computing to quantum information. This Review explores the fundamental principles, recent advances and the future potential of integrated lithium niobate technologies.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"7 5\",\"pages\":\"237-254\"},\"PeriodicalIF\":39.5000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-025-00825-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00825-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Integrated electro-optics on thin-film lithium niobate
Electro-optics bridges electronics and photonics and serves as a foundation for a wide array of applications from communications and computing to sensing and quantum information. Integrated electro-optic approaches, in particular, enable essential electronic high-speed control for photonics while offering photonic parallelism for electronics. Recent developments in thin-film lithium niobate photonics have advanced its use for electro-optics. This technology offers not only the necessary strong electro-optic coupling but also ultralow optical loss and high microwave bandwidth. Its tight field confinement and compatibility with established nanofabrication techniques allow for excellent reconfigurability and scalability, aiding the creation of devices and systems that were deemed nearly impossible in bulk systems. Building on this platform, various new electro-optic devices1–16 have emerged, which surpass the current state of the art1–9,12–16 and introduce functionalities that previously did not exist3,10,11. Thin-film lithium niobate provides a unique platform to explore various areas of physics, including photonic non-Hermitian synthetic dimensions17–19, active topological physics20,21 and quantum electro-optics15,22–24. In this Review, we present the fundamental principles of electro-optics, drawing connections between fundamental science and state-of-the-art technology. We discuss the accomplishments and prospects of integrated electro-optics enabled by the thin-film lithium niobate platform. The strong electro-optic interaction, low optical loss and high microwave bandwidth of thin-film lithium niobate have enabled applications from computing to quantum information. This Review explores the fundamental principles, recent advances and the future potential of integrated lithium niobate technologies.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.