{"title":"Neutrinos from explosive transients at the dawn of multi-messenger astronomy","authors":"Irene Tamborra","doi":"10.1038/s42254-025-00828-2","DOIUrl":null,"url":null,"abstract":"With the advent of time-domain astronomy and the game-changing next generation of telescopes, we have unprecedented opportunities to explore the most energetic events in our Universe through electromagnetic radiation, gravitational waves and neutrinos. These are elementary particles, which exist in three different flavours and change the latter as they propagate in the dense core of astrophysical sources as well as en route to Earth. To capitalize on existing and upcoming multi-messenger opportunities, it is crucial to understand: (1) the role of neutrinos in explosive transient sources as well as in the synthesis of the elements heavier than iron; (2) the impact of neutrino physics on the multi-messenger observables and (3) the information on the source physics carried by the detectable neutrino signal. In this Review, the status of this exciting and fast-moving field is outlined, focusing on astrophysical sources linked to collapsing massive stars and neutron-star mergers. In the light of the upcoming plethora of multi-messenger data, outstanding open issues concerning the optimization of multi-messenger detection strategies are discussed. Neutrinos have a crucial role in explosive transients, influencing the source dynamics and element synthesis. This Review summarizes our understanding of sources linked to collapsing massive stars and neutron-star mergers, emphasizing multi-messenger detection strategies.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 6","pages":"285-298"},"PeriodicalIF":39.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00828-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
With the advent of time-domain astronomy and the game-changing next generation of telescopes, we have unprecedented opportunities to explore the most energetic events in our Universe through electromagnetic radiation, gravitational waves and neutrinos. These are elementary particles, which exist in three different flavours and change the latter as they propagate in the dense core of astrophysical sources as well as en route to Earth. To capitalize on existing and upcoming multi-messenger opportunities, it is crucial to understand: (1) the role of neutrinos in explosive transient sources as well as in the synthesis of the elements heavier than iron; (2) the impact of neutrino physics on the multi-messenger observables and (3) the information on the source physics carried by the detectable neutrino signal. In this Review, the status of this exciting and fast-moving field is outlined, focusing on astrophysical sources linked to collapsing massive stars and neutron-star mergers. In the light of the upcoming plethora of multi-messenger data, outstanding open issues concerning the optimization of multi-messenger detection strategies are discussed. Neutrinos have a crucial role in explosive transients, influencing the source dynamics and element synthesis. This Review summarizes our understanding of sources linked to collapsing massive stars and neutron-star mergers, emphasizing multi-messenger detection strategies.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.