{"title":"非中心对称卤化物钙钛矿的光电效应","authors":"Joe Briscoe, Jian Shi","doi":"10.1038/s42254-025-00822-8","DOIUrl":null,"url":null,"abstract":"Photogalvanic effects are characterized by the presence of light-polarization-dependent non-zero short circuit photocurrent and non-zero open circuit voltage in junction-free bulk non-centrosymmetric semiconductors and metals and have been attributed to the non-trivial Berry parameters of matter. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites demonstrate a coexistence of excellent semiconducting properties, switchable or tunable Berry parameters and spin–momentum locking, and strong spin–orbit coupling, making them an ideal model system to explore the photogalvanic effects, and its use in characterizing topological properties, and to develop novel devices. In this Perspective, we describe various mechanisms to break inversion symmetry in halide perovskites and present the theory and mechanisms of the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We discuss the roles of symmetry, strain, chemistry, interface and electric polarization on the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We present the key opportunities and challenges of designing and harnessing photogalvanic effects in non-centrosymmetric halide perovskites for unconventional devices for spin computing, sensing and solar energy applications. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites are an ideal model system to explore the photogalvanic effects. This Perspective discusses the opportunities and challenges of designing and harnessing photogalvanic effects in these materials towards unconventional devices for spin computing, sensing and solar energy applications.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 5","pages":"270-279"},"PeriodicalIF":39.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photogalvanic effects in non-centrosymmetric halide perovskites\",\"authors\":\"Joe Briscoe, Jian Shi\",\"doi\":\"10.1038/s42254-025-00822-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photogalvanic effects are characterized by the presence of light-polarization-dependent non-zero short circuit photocurrent and non-zero open circuit voltage in junction-free bulk non-centrosymmetric semiconductors and metals and have been attributed to the non-trivial Berry parameters of matter. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites demonstrate a coexistence of excellent semiconducting properties, switchable or tunable Berry parameters and spin–momentum locking, and strong spin–orbit coupling, making them an ideal model system to explore the photogalvanic effects, and its use in characterizing topological properties, and to develop novel devices. In this Perspective, we describe various mechanisms to break inversion symmetry in halide perovskites and present the theory and mechanisms of the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We discuss the roles of symmetry, strain, chemistry, interface and electric polarization on the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We present the key opportunities and challenges of designing and harnessing photogalvanic effects in non-centrosymmetric halide perovskites for unconventional devices for spin computing, sensing and solar energy applications. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites are an ideal model system to explore the photogalvanic effects. This Perspective discusses the opportunities and challenges of designing and harnessing photogalvanic effects in these materials towards unconventional devices for spin computing, sensing and solar energy applications.\",\"PeriodicalId\":19024,\"journal\":{\"name\":\"Nature Reviews Physics\",\"volume\":\"7 5\",\"pages\":\"270-279\"},\"PeriodicalIF\":39.5000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42254-025-00822-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00822-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Photogalvanic effects in non-centrosymmetric halide perovskites
Photogalvanic effects are characterized by the presence of light-polarization-dependent non-zero short circuit photocurrent and non-zero open circuit voltage in junction-free bulk non-centrosymmetric semiconductors and metals and have been attributed to the non-trivial Berry parameters of matter. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites demonstrate a coexistence of excellent semiconducting properties, switchable or tunable Berry parameters and spin–momentum locking, and strong spin–orbit coupling, making them an ideal model system to explore the photogalvanic effects, and its use in characterizing topological properties, and to develop novel devices. In this Perspective, we describe various mechanisms to break inversion symmetry in halide perovskites and present the theory and mechanisms of the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We discuss the roles of symmetry, strain, chemistry, interface and electric polarization on the linear and circular photogalvanic effect in non-centrosymmetric halide perovskites. We present the key opportunities and challenges of designing and harnessing photogalvanic effects in non-centrosymmetric halide perovskites for unconventional devices for spin computing, sensing and solar energy applications. Non-centrosymmetric ferroelectric and piezoelectric halide perovskites are an ideal model system to explore the photogalvanic effects. This Perspective discusses the opportunities and challenges of designing and harnessing photogalvanic effects in these materials towards unconventional devices for spin computing, sensing and solar energy applications.
期刊介绍:
Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.