Nature Reviews Physics最新文献

筛选
英文 中文
Quantum phenomena in attosecond science 阿秒科学中的量子现象
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-10-07 DOI: 10.1038/s42254-024-00769-2
Lidice Cruz-Rodriguez, Diptesh Dey, Antonia Freibert, Philipp Stammer
{"title":"Quantum phenomena in attosecond science","authors":"Lidice Cruz-Rodriguez, Diptesh Dey, Antonia Freibert, Philipp Stammer","doi":"10.1038/s42254-024-00769-2","DOIUrl":"10.1038/s42254-024-00769-2","url":null,"abstract":"The ability to manipulate and observe phenomena on attosecond timescales has yielded groundbreaking insights into electron dynamics and the behaviour of matter exposed to intense light fields. The interdisciplinary field of attosecond science connects various research areas, including quantum optics, quantum chemistry and quantum information science. However, the intrinsic quantum effects in attosecond science have been largely ignored. In this Perspective, we discuss the latest theoretical and experimental advances in exploring and understanding quantum phenomena within attosecond science. We focus on distinguishing genuinely quantum observations from classical phenomena in the context of high-harmonic generation and above-threshold ionization. Additionally, we illuminate the often overlooked yet important role of entanglement in attosecond processes, elucidating its influence on experimental outcomes. Attosecond science is a versatile discipline for studying ultrafast dynamics in matter on the microscopic scale. This Perspective explores the theoretical and experimental developments in this field focusing on distinguishing genuinely quantum observations from classical phenomena.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"691-704"},"PeriodicalIF":44.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics and the empirical gap of trustworthy AI 物理学与可信人工智能的经验差距
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-10-07 DOI: 10.1038/s42254-024-00772-7
Savannah Thais
{"title":"Physics and the empirical gap of trustworthy AI","authors":"Savannah Thais","doi":"10.1038/s42254-024-00772-7","DOIUrl":"10.1038/s42254-024-00772-7","url":null,"abstract":"Understanding what cutting-edge AI models are doing ‘under the hood’ requires not just theoretical research but also well-controlled computational experiments. Savannah Thais explains why physics datasets may be the testing ground that AI developers need and how physicists can play a critical role in developing trustworthy AI.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"640-641"},"PeriodicalIF":44.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nobel 1924: the physics of precision 1924年诺贝尔奖:精确物理学
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-10-04 DOI: 10.1038/s42254-024-00752-x
Ghada Badawy
{"title":"Nobel 1924: the physics of precision","authors":"Ghada Badawy","doi":"10.1038/s42254-024-00752-x","DOIUrl":"10.1038/s42254-024-00752-x","url":null,"abstract":"99 years ago, the 1924 Nobel Prize in Physics was awarded — one year late — to Karl Manne Siegbahn.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"578-578"},"PeriodicalIF":44.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nobel 1944: resonance method for measuring nuclear magnetic moments 1944年诺贝尔奖:测量核磁矩的共振法
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-10-04 DOI: 10.1038/s42254-024-00751-y
Chenyu Wang
{"title":"Nobel 1944: resonance method for measuring nuclear magnetic moments","authors":"Chenyu Wang","doi":"10.1038/s42254-024-00751-y","DOIUrl":"10.1038/s42254-024-00751-y","url":null,"abstract":"80 years ago, the Nobel Prize in Physics was awarded to Isidor Isaac Rabi.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"579-579"},"PeriodicalIF":44.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nobel 1964: masers and lasers 1964 年诺贝尔奖: masers 和激光器
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-10-04 DOI: 10.1038/s42254-024-00767-4
Hannah Hatcher
{"title":"Nobel 1964: masers and lasers","authors":"Hannah Hatcher","doi":"10.1038/s42254-024-00767-4","DOIUrl":"10.1038/s42254-024-00767-4","url":null,"abstract":"60 years ago, the Nobel Prize in Physics was awarded to Charles Townes, Nicolay Basov and Aleksandr Prokhorov.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"580-580"},"PeriodicalIF":44.8,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Petahertz electronics Petahertz 电子设备
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-10-03 DOI: 10.1038/s42254-024-00764-7
Christian Heide, Phillip D. Keathley, Matthias F. Kling
{"title":"Petahertz electronics","authors":"Christian Heide, Phillip D. Keathley, Matthias F. Kling","doi":"10.1038/s42254-024-00764-7","DOIUrl":"10.1038/s42254-024-00764-7","url":null,"abstract":"Petahertz, or lightwave, electronics uses tailored optical waveforms to control charge carriers in an electronic circuit at petahertz frequencies. This may enable faster processing than conventional pulsed electronics, which cannot be scaled beyond gigahertz frequencies. In recent years, petahertz-scale currents driven by optical fields have been measured in solid-state systems and nanoscale structures, with several proof-of-principle demonstrations of sub-optical-cycle current generation and optical-field-resolved waveform detection at the sub-femtosecond to few-femtosecond scale. Recent work has taken the first steps towards digital and quantum operation by exploring optical-field-driven logic and memory functionality. In this Review, we discuss the progress towards sub-cycle field-driven current injection, highlighting key theoretical concepts, experimental milestones, and questions remaining as we push towards realizing petahertz electronics for ultrafast optical waveform analysis, digital logic, communications, and quantum computation.   Petahertz electronics uses sub-cycle currents from tailored optical waveforms for high-speed signal processing. This Review discusses progress towards the analogue age of petahertz electronics for optical waveform analysis and communication and provides an outlook toward digital petahertz electronics for classical and quantum computing.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"648-662"},"PeriodicalIF":44.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The physics of freezing and melting in the presence of flows 存在流动时冻结和熔化的物理学原理
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-09-30 DOI: 10.1038/s42254-024-00766-5
Yihong Du, Enrico Calzavarini, Chao Sun
{"title":"The physics of freezing and melting in the presence of flows","authors":"Yihong Du, Enrico Calzavarini, Chao Sun","doi":"10.1038/s42254-024-00766-5","DOIUrl":"10.1038/s42254-024-00766-5","url":null,"abstract":"Ice in the environment plays a central role in both global-scale processes on Earth and many human activities. Issues related to its description, including the modelling of natural ice dynamics from the smallest to the largest scales, are of great importance. In the natural environment, melting or freezing processes are typically coupled to those of fluid flows. Therefore, the interplay between fluid mechanics and phase-change thermodynamics is a highly topical problem. In recent years, fluid–ice interface problems have been studied via not only field measurements but also laboratory experiments, numerical simulations and theoretical analyses. This Perspective considers the state-of-the-art knowledge of the phenomenology of fluid–ice coupling processes in standardized configurations. These include freezing and melting in thermally stratified natural convection of fresh water, double-diffusive convection and convection in the mushy ice of salty water in confined systems, as well as imposed flows moving along an ice layer or surrounding dispersed ice bodies. It also highlights open questions of geophysical interest that could benefit from fundamental studies with a physical and fluid dynamic approach. The dynamics of water freezing and ice melting in natural environments involves many intricate fluid mechanics processes. To tackle these complexities, examining them in well-controlled laboratory settings proves highly advantageous.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"676-690"},"PeriodicalIF":44.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
70 years of CERN 欧洲核子研究中心成立 70 周年
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-09-25 DOI: 10.1038/s42254-024-00765-6
{"title":"70 years of CERN","authors":"","doi":"10.1038/s42254-024-00765-6","DOIUrl":"10.1038/s42254-024-00765-6","url":null,"abstract":"The history of particle physics is one of the great scientific stories of the 20th century, and a key player in that story is CERN. As the laboratory celebrates its 70th anniversary, there are challenges ahead.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"577-577"},"PeriodicalIF":44.8,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42254-024-00765-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging tailored light sources for studying chirality and symmetry 用于研究手性和对称性的新兴定制光源
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-09-23 DOI: 10.1038/s42254-024-00763-8
Dino Habibović, Kathryn R. Hamilton, Ofer Neufeld, Laura Rego
{"title":"Emerging tailored light sources for studying chirality and symmetry","authors":"Dino Habibović, Kathryn R. Hamilton, Ofer Neufeld, Laura Rego","doi":"10.1038/s42254-024-00763-8","DOIUrl":"10.1038/s42254-024-00763-8","url":null,"abstract":"Ultrashort laser pulses are unique tools to trigger and probe the fastest charge dynamics in matter, allowing the investigation of fundamental physical phenomena with unprecedented resolution in space, time and energy. One of the most fascinating opportunities that ultrashort pulses offer is the possibility of modulating and investigating symmetries by tailoring the properties of the laser beam in the spatial and polarization domains, effectively controlling symmetry breaking on multiple levels. In particular, this allows the probing of chiral matter and ultrafast chiral dynamics. In recent years, the development of highly sensitive approaches for studying chirality has been a hot topic in physics and chemistry that has developed largely separately from the field of tailored light. This Perspective discusses the individual and joint evolution of these fields, with an emphasis on how the fields have already cross-fertilized, opening new opportunities in science. We outline a future outlook of how the topics are expected to fully merge and mutually evolve, emphasizing open issues. This Perspective explores the potential of using tailored fields to investigate chiral matter and ultrafast chiral dynamics. Light fields with well-defined symmetry properties can open new opportunities for research in chiral light–matter interactions.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"663-675"},"PeriodicalIF":44.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
70 years at the high-energy frontier with the CERN accelerator complex 欧洲核子研究中心加速器综合体在高能前沿的 70 年
IF 44.8 1区 物理与天体物理
Nature Reviews Physics Pub Date : 2024-09-19 DOI: 10.1038/s42254-024-00758-5
Oliver Brüning, Max Klein, Stephen Myers, Lucio Rossi
{"title":"70 years at the high-energy frontier with the CERN accelerator complex","authors":"Oliver Brüning, Max Klein, Stephen Myers, Lucio Rossi","doi":"10.1038/s42254-024-00758-5","DOIUrl":"10.1038/s42254-024-00758-5","url":null,"abstract":"Over the first 70 years of its existence, CERN has created an impressive portfolio of accelerators, many of which are still in operation today. The ‘jewel in the crown’ of the complex is certainly the 27-km tunnel and its infrastructure, built approximately 100 m underground between the Jura mountains and Lake Geneva on the French–Swiss border. In that tunnel, two energy-frontier machines — the Large Electron–Positron Collider and the Large Hadron Collider — have, for the past 35 years, shaped the landscape of high-energy physics. The tunnel could also house future accelerator complexes that have the potential of further defining that landscape for decades to come. CERN marks this year a major anniversary, of 70 years at the forefront of accelerator technology for high-energy physics. The story of its accelerator complex and 27-km tunnel — a major achievement in engineering and physics — is still unfolding.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"628-637"},"PeriodicalIF":44.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42254-024-00758-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信