Barren plateaus in variational quantum computing

IF 44.8 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Martín Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J. Coles, Lukasz Cincio, Jarrod R. McClean, Zoë Holmes, M. Cerezo
{"title":"Barren plateaus in variational quantum computing","authors":"Martín Larocca, Supanut Thanasilp, Samson Wang, Kunal Sharma, Jacob Biamonte, Patrick J. Coles, Lukasz Cincio, Jarrod R. McClean, Zoë Holmes, M. Cerezo","doi":"10.1038/s42254-025-00813-9","DOIUrl":null,"url":null,"abstract":"Variational quantum computing offers a flexible computational approach with a broad range of applications. However, a key obstacle to realizing their potential is the barren plateau (BP) phenomenon. When a model exhibits a BP, its parameter optimization landscape becomes exponentially flat and featureless as the problem size increases. Importantly, all the moving pieces of an algorithm — choices of ansatz, initial state, observable, loss function and hardware noise — can lead to BPs if they are ill-suited. As BPs strongly impact on trainability, researchers have dedicated considerable effort to develop theoretical and heuristic methods to understand and mitigate their effects. As a result, the study of BPs has become a thriving area of research, influencing and exchanging ideas with other fields such as quantum optimal control, tensor networks and learning theory. This article provides a review of the current understanding of the BP phenomenon. Barren plateaus are widely considered as one of the main limitations for variational quantum algorithms. This Review summarizes the latest understandings of barren plateaus, indicating its causes, architecture that will suffer from this phenomenon, and discusses strategies that can — and cannot — avoid it.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"7 4","pages":"174-189"},"PeriodicalIF":44.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42254-025-00813-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Variational quantum computing offers a flexible computational approach with a broad range of applications. However, a key obstacle to realizing their potential is the barren plateau (BP) phenomenon. When a model exhibits a BP, its parameter optimization landscape becomes exponentially flat and featureless as the problem size increases. Importantly, all the moving pieces of an algorithm — choices of ansatz, initial state, observable, loss function and hardware noise — can lead to BPs if they are ill-suited. As BPs strongly impact on trainability, researchers have dedicated considerable effort to develop theoretical and heuristic methods to understand and mitigate their effects. As a result, the study of BPs has become a thriving area of research, influencing and exchanging ideas with other fields such as quantum optimal control, tensor networks and learning theory. This article provides a review of the current understanding of the BP phenomenon. Barren plateaus are widely considered as one of the main limitations for variational quantum algorithms. This Review summarizes the latest understandings of barren plateaus, indicating its causes, architecture that will suffer from this phenomenon, and discusses strategies that can — and cannot — avoid it.

Abstract Image

变分量子计算中的贫瘠高原
变分量子计算提供了一种灵活的计算方法,具有广泛的应用。然而,实现其潜力的关键障碍是贫瘠高原(BP)现象。当模型显示BP时,随着问题规模的增加,其参数优化景观变得指数平坦和无特征。重要的是,算法的所有移动部分——ansatz的选择、初始状态、可观察值、损失函数和硬件噪声——如果不合适,都可能导致bp。由于bp对可训练性的影响很大,研究人员已经投入了相当大的努力来开发理论和启发式方法来理解和减轻它们的影响。因此,bp的研究已经成为一个蓬勃发展的研究领域,与量子最优控制、张量网络和学习理论等其他领域影响和交流思想。本文综述了目前对BP现象的认识。贫瘠的高原被广泛认为是变分量子算法的主要限制之一。本综述总结了对贫瘠高原的最新理解,指出了其原因,将遭受这一现象的建筑,并讨论了可以-和不能-避免它的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
47.80
自引率
0.50%
发文量
122
期刊介绍: Nature Reviews Physics is an online-only reviews journal, part of the Nature Reviews portfolio of journals. It publishes high-quality technical reference, review, and commentary articles in all areas of fundamental and applied physics. The journal offers a range of content types, including Reviews, Perspectives, Roadmaps, Technical Reviews, Expert Recommendations, Comments, Editorials, Research Highlights, Features, and News & Views, which cover significant advances in the field and topical issues. Nature Reviews Physics is published monthly from January 2019 and does not have external, academic editors. Instead, all editorial decisions are made by a dedicated team of full-time professional editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信