{"title":"Nobel 2004: freedom for quarks!","authors":"Alison Wright","doi":"10.1038/s42254-024-00768-3","DOIUrl":"10.1038/s42254-024-00768-3","url":null,"abstract":"20 years ago, the Nobel Prize in Physics was awarded to David Gross, Frank Wilczek and David Politzer.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"581-581"},"PeriodicalIF":44.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federica Riti, Philipp Gadow, David Walter, Maria Vieites Diaz, Barbara Maria Latacz, Luigi Dello Stritto, Petar Bokan
{"title":"A history of CERN in seven physics milestones","authors":"Federica Riti, Philipp Gadow, David Walter, Maria Vieites Diaz, Barbara Maria Latacz, Luigi Dello Stritto, Petar Bokan","doi":"10.1038/s42254-024-00762-9","DOIUrl":"10.1038/s42254-024-00762-9","url":null,"abstract":"Over the past 70 years, CERN’s accelerators and experiments have delivered some remarkable results and discoveries, owing to the efforts of generations of physicists. We asked seven of the new generation — all CERN Fellows, in the early stages of their career — to tell us about some of the milestone achievements in the history of their laboratory.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"582-586"},"PeriodicalIF":44.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42254-024-00762-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Noah Schlossberger, Nikunjkumar Prajapati, Samuel Berweger, Andrew P. Rotunno, Alexandra B. Artusio-Glimpse, Matthew T. Simons, Abrar A. Sheikh, Eric B. Norrgard, Stephen P. Eckel, Christopher L. Holloway
{"title":"Rydberg states of alkali atoms in atomic vapour as SI-traceable field probes and communications receivers","authors":"Noah Schlossberger, Nikunjkumar Prajapati, Samuel Berweger, Andrew P. Rotunno, Alexandra B. Artusio-Glimpse, Matthew T. Simons, Abrar A. Sheikh, Eric B. Norrgard, Stephen P. Eckel, Christopher L. Holloway","doi":"10.1038/s42254-024-00756-7","DOIUrl":"10.1038/s42254-024-00756-7","url":null,"abstract":"Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields. Over the past few years, Rydberg atoms have been used as sensitive probes for performing self-calibrated and SI-traceable electric field measurements. In this Technical Review, we introduce and examine the current state of Rydberg atom-based electrometry in room-temperature atomic vapours. We cover the fundamental principles, experimental techniques, recent advancements, and applications of this field, providing a comprehensive resource for researchers interested in utilizing Rydberg atoms for precise electric field measurements. Rydberg atoms are sensitive to radio frequency electric fields, which make them useful as sensors. This Technical Review discusses Rydberg sensors that measure the amplitude and phase of electric fields at frequencies from d.c. to THz, as well as technological applications of these sensors.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"606-620"},"PeriodicalIF":44.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142257111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Nettels, Nicola Galvanetto, Miloš T. Ivanović, Mark Nüesch, Tianjin Yang, Benjamin Schuler
{"title":"Single-molecule FRET for probing nanoscale biomolecular dynamics","authors":"Daniel Nettels, Nicola Galvanetto, Miloš T. Ivanović, Mark Nüesch, Tianjin Yang, Benjamin Schuler","doi":"10.1038/s42254-024-00748-7","DOIUrl":"10.1038/s42254-024-00748-7","url":null,"abstract":"Single-molecule spectroscopy is a powerful method for studying the physics of molecular systems, particularly biomolecules, such as proteins and nucleic acids. By avoiding ensemble averaging, single-molecule techniques can resolve structural distributions and fluctuations even for complex and conformationally heterogeneous systems; they also reveal the close link between biological function and the statistical mechanics of the underlying processes. The combination of single-molecule fluorescence detection with Förster resonance energy transfer has become an essential tool for probing biomolecular dynamics on timescales ranging from nanoseconds to days. This Review briefly outlines the state of the art of single-molecule Förster resonance energy transfer spectroscopy and then highlights some of the most important physics-based developments that are expected to further expand the scope of the technique. Key areas of progress include improved time resolution, access to nonequilibrium dynamics and synergies with advances in data analysis and simulations. These developments create new opportunities for attaining a comprehensive understanding of the dynamics and functional mechanisms of biological processes at the nanoscale. The combination of single-molecule fluorescence detection with Förster resonance energy transfer provides a powerful probe of biomolecular dynamics on timescales ranging from nanoseconds to days. This Review outlines single-molecule Förster resonance energy transfer spectroscopy with a focus on dynamics and highlights future developments and enhanced capabilities.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 10","pages":"587-605"},"PeriodicalIF":44.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terrance Barkan, Chirag R. Ratwani, Dexter Johnson, Kishan Thodkar, Cary Hill
{"title":"Mapping the landscape for graphene commercialization","authors":"Terrance Barkan, Chirag R. Ratwani, Dexter Johnson, Kishan Thodkar, Cary Hill","doi":"10.1038/s42254-024-00754-9","DOIUrl":"10.1038/s42254-024-00754-9","url":null,"abstract":"20 years on from the isolation of graphene, over 150,000 graphene-related patents have been filed. Yet despite early promises of integration into semiconducting and photonic devices, the biggest applications to date have been in energy storage and polymers. This article analyses graphene commercialization over the past two decades and discusses the role of graphene in applications towards net-zero carbon.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 11","pages":"646-647"},"PeriodicalIF":44.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142204024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A model for changing land use","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00761-w","DOIUrl":"10.1038/s42254-024-00761-w","url":null,"abstract":"A paper in Royal Society Open Science presents an Ising-like model to describe changes in land use.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"534-534"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Farewells and hellos at Nature Reviews Physics","authors":"","doi":"10.1038/s42254-024-00759-4","DOIUrl":"10.1038/s42254-024-00759-4","url":null,"abstract":"This month, we say farewell to our founding Chief Editor, Iulia Georgescu and greet our new Chief Editor, Nina Meinzer. We also thank our first Advisory Board members (2023–2024) and welcome our next Advisory Board.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"525-525"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42254-024-00759-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"100 years of the Ising model","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00760-x","DOIUrl":"10.1038/s42254-024-00760-x","url":null,"abstract":"In 1924, Ernst Ising thought he showed a simple model for ferromagnetism couldn''t work. 100 years later, that model, now named for him, is used across all of physics.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"530-530"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ising-like model predicts close elections","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00753-w","DOIUrl":"10.1038/s42254-024-00753-w","url":null,"abstract":"A model of voters, based on the Ising model, gives an explanation for why elections are often so close.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"531-531"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fully connected Ising machine using standard technology","authors":"Zoe Budrikis","doi":"10.1038/s42254-024-00757-6","DOIUrl":"10.1038/s42254-024-00757-6","url":null,"abstract":"A paper in Nature Electronics reports a proof-of-concept Ising machine with all-to-all connectivity.","PeriodicalId":19024,"journal":{"name":"Nature Reviews Physics","volume":"6 9","pages":"533-533"},"PeriodicalIF":44.8,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}