{"title":"Mechanistic study of SCOOPs recognition by MIK2–BAK1 complex reveals the role of N-glycans in plant ligand–receptor–coreceptor complex formation","authors":"Huimin Wu, Lihao Wan, Zunyong Liu, Yunqing Jian, Chenchen Zhang, Xiakun Mao, Zhiyun Wang, Qiang Wang, Yaxin Hu, Lizhong Xiong, Zhujun Xia, Juan Xue, Shan Li, Ping He, Libo Shan, Shutong Xu","doi":"10.1038/s41477-024-01836-3","DOIUrl":"10.1038/s41477-024-01836-3","url":null,"abstract":"Ligand-induced receptor and co-receptor heterodimerization is a common mechanism in receptor kinase (RK) signalling activation. SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) mediate the complex formation of Arabidopsis RK MIK2 and co-receptor BAK1, triggering immune responses. Through structural, biochemical and genetic analyses, we demonstrate that SCOOPs use their SxS motif and adjacent residues to bind MIK2 and the carboxy-terminal GGR residues to link MIK2 to BAK1. While N-glycosylation of plant RKs is typically associated with protein maturation, plasma membrane targeting and conformation maintenance, a surprising revelation emerges from our crystal structural analysis of MIK2–SCOOP–BAK1 complexes. Specific N-glycans on MIK2 directly interact with BAK1 upon SCOOP sensing. The absence of N-glycosylation at the specific site in MIK2 neither affects its subcellular localization and protein accumulation in plant cells nor alters its structural conformation, but markedly reduces its affinity for BAK1, abolishing SCOOP-triggered immune responses. This N-glycan-mediated receptor and co-receptor heterodimerization occurs in both Arabidopsis and Brassica napus. Our findings elucidate the molecular basis of SCOOP perception by the MIK2–BAK1 immune complex and underscore the crucial role of N-glycans in plant receptor–coreceptor interactions and signalling activation, shaping immune responses. Wu et al. elucidate the molecular basis for SCOOPs perception by the MIK2–BAK1 immune complex and demonstrate an unexpectedly pivotal role of N-glycans in plant receptor–coreceptor interactions and signalling activation, shaping immune responses.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1984-1998"},"PeriodicalIF":15.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01836-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"N-glycosylation facilitates the activation of a plant cell-surface receptor","authors":"Fangshuai Jia, Yu Xiao, Yaojie Feng, Jinghui Yan, Mingzhu Fan, Yue Sun, Shijia Huang, Weiguo Li, Tian Zhao, Zhifu Han, Shuguo Hou, Jijie Chai","doi":"10.1038/s41477-024-01841-6","DOIUrl":"10.1038/s41477-024-01841-6","url":null,"abstract":"Plant receptor kinases (RKs) are critical for transmembrane signalling involved in various biological processes including plant immunity. MALE DISCOVERER1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) is a unique RK that recognizes a family of immunomodulatory peptides called SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) and activates pattern-triggered immunity responses. However, the precise mechanisms underlying SCOOP recognition and activation of MIK2 remain poorly understood. Here we present the cryogenic electron microscopy structure of a ternary complex consisting of the extracellular leucine-rich repeat (LRR) of MIK2 (MIK2LRR), SCOOP12 and the extracellular LRR of the co-receptor BAK1 (BAK1LRR) at a resolution of 3.34 Å. The structure reveals that a DNHH motif in MIK2LRR plays a critical role in specifically recognizing the highly conserved SxS motif of SCOOP12. Furthermore, the structure demonstrates that N-glycans at MIK2LRRAsn410 directly interact with the N-terminal capping region of BAK1LRR. Mutation of the glycosylation site, MIK2LRRN410D, completely abolishes the SCOOP12-independent interaction between MIK2LRR and BAK1LRR and substantially impairs the assembly of the MIK2LRR–SCOOP12–BAK1LRR complex. Supporting the biological relevance of N410-glycosylation, MIK2N410D substantially compromises SCOOP12-triggered immune responses in plants. Collectively, these findings elucidate the mechanism underlying the loose specificity of SCOOP recognition by MIK2 and reveal an unprecedented mechanism by which N-glycosylation modification of LRR-RK promotes receptor activation. This study demonstrates a crucial role of N-glycosylation in activating a receptor-like kinase by promoting its interaction with co-receptors.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"2014-2026"},"PeriodicalIF":15.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PlantsPub Date : 2024-11-04DOI: 10.1038/s41477-024-01839-0
Ning An, Xiaowei Huang, Zhao Yang, Minhua Zhang, Miaolian Ma, Fang Yu, Lianyan Jing, Boya Du, Yong-Fei Wang, Xue Zhang, Peng Zhang
{"title":"Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16","authors":"Ning An, Xiaowei Huang, Zhao Yang, Minhua Zhang, Miaolian Ma, Fang Yu, Lianyan Jing, Boya Du, Yong-Fei Wang, Xue Zhang, Peng Zhang","doi":"10.1038/s41477-024-01839-0","DOIUrl":"10.1038/s41477-024-01839-0","url":null,"abstract":"Jasmonates (JAs) are a class of oxylipin phytohormones including jasmonic acid (JA) and derivatives that regulate plant growth, development and biotic and abiotic stress. A number of transporters have been identified to be responsible for the cellular and subcellular translocation of JAs. However, the mechanistic understanding of how these transporters specifically recognize and transport JAs is scarce. Here we determined the cryogenic electron microscopy structure of JA exporter AtABCG16 in inward-facing apo, JA-bound and occluded conformations, and outward-facing post translocation conformation. AtABCG16 structure forms a homodimer, and each monomer contains a nucleotide-binding domain, a transmembrane domain and an extracellular domain. Structural analyses together with biochemical and plant physiological experiments revealed the molecular mechanism by which AtABCG16 specifically recognizes and transports JA. Structural analyses also revealed that AtABCG16 features a unique bifurcated substrate translocation pathway, which is composed of two independent substrate entrances, two substrate-binding pockets and a shared apoplastic cavity. In addition, residue Phe608 from each monomer is disclosed to function as a gate along the translocation pathway controlling the accessing of substrate JA from the cytoplasm or apoplast. Based on the structural and biochemical analyses, a working model of AtABCG16-mediated JA transport is proposed, which diversifies the molecular mechanisms of ABC transporters. The authors report the cryo-EM structure of JA transporter ABCG16 in multiple conformations. It features a bifurcated translocation pathway, revealing the specific JA binding and transport mechanism that diversifies ABC transporters in higher plants.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"2052-2061"},"PeriodicalIF":15.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PlantsPub Date : 2024-10-31DOI: 10.1038/s41477-024-01840-7
Keran Zhai, Jack Rhodes, Cyril Zipfel
{"title":"A peptide-receptor module links cell wall integrity sensing to pattern-triggered immunity","authors":"Keran Zhai, Jack Rhodes, Cyril Zipfel","doi":"10.1038/s41477-024-01840-7","DOIUrl":"10.1038/s41477-024-01840-7","url":null,"abstract":"Plants employ cell-surface receptors to perceive non- or altered-self, including the integrity of their cell wall. Here we identify a specific ligand–receptor module responsive to cell wall damage that potentiates immunity in Arabidopsis. Disruption of cell wall integrity by inhibition of cellulose biosynthesis promotes pattern-triggered immunity transcriptionally in a manner dependent on the receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Notably, while MIK2 can perceive peptides of the large SERINE RICH ENDOGENOUS PEPTIDE family, a single member of this family, SCOOP18, is transcriptionally induced upon cell wall damage and is required for subsequent responses such as lignification and immunity potentiation. Collectively, our results identify the SCOOP18–MIK2 ligand–receptor module as an important central hub, connecting plant cell wall integrity sensing with immunity. The authors identified a specific Arabidopsis ligand–receptor module as a central hub connecting cell wall integrity sensing with pattern-triggered immunity through transcriptional reprogramming.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"2027-2037"},"PeriodicalIF":15.8,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142555844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PlantsPub Date : 2024-10-28DOI: 10.1038/s41477-024-01838-1
Hang Zhang, Qian Wang, Noel Blanco-Touriñán, Christian S. Hardtke
{"title":"Antagonistic CLE peptide pathways shape root meristem tissue patterning","authors":"Hang Zhang, Qian Wang, Noel Blanco-Touriñán, Christian S. Hardtke","doi":"10.1038/s41477-024-01838-1","DOIUrl":"10.1038/s41477-024-01838-1","url":null,"abstract":"Secreted CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands dimension the stem cell niche of Arabidopsis shoot meristems by signalling through redundant and cross-compensating CLAVATA1 (CLV1)-type receptor kinases. In the root meristem, the CLV1 homologues BARELY ANY MERISTEM 1 (BAM1) and BAM2 drive CLE13/16-mediated formative divisions that produce the ground tissue layers. Here we report that BAM1/2 are also required to initiate the vascular phloem lineage and that cross-compensation between CLV1-type receptors as observed in the shoot does not operate similarly in the root. Rather, we find that BAM3-mediated CLE45 signalling antagonizes BAM1/2-mediated CLE11/12/13 signalling in the phloem initials but not in the ground tissue. We further observe spatiotemporally contrasting CLE signalling requirements for phloem initiation and differentiation, which are shaped by the SHORT ROOT (SHR) pathway. Our findings thus suggest an intricate quantitative interplay between distinct and antagonistic CLE signalling pathways that organizes tissue layer formation in the Arabidopsis root meristem. The activity of distinct and antagonistic CLE peptide pathways intersects to produce and specify different tissue layers in the Arabidopsis root tip. Their quantitative modulation is required to guide phloem initiation and differentiation.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1900-1908"},"PeriodicalIF":15.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Total biosynthesis of the medicinal triterpenoid saponin astragalosides","authors":"Bingyan Xu, Jian-Ping Huang, Guoqing Peng, Wenying Cao, Zhong Liu, Yin Chen, Jingchun Yao, Yong-Jiang Wang, Jie Li, Guimin Zhang, Shilin Chen, Sheng-Xiong Huang","doi":"10.1038/s41477-024-01827-4","DOIUrl":"10.1038/s41477-024-01827-4","url":null,"abstract":"Astragalus membranaceus has been used in traditional Chinese medicine for over 2,000 years. Its major active triterpenoid saponins, astragalosides, have attracted great attention due to their multiple health benefits and applications in medicine. Despite this, the biosynthetic machinery for astragalosides remains enigmatic. Here a chromosome-level genome assembly of A. membranaceus was generated. The identification of two tailoring enzymes required for astragaloside biosynthesis enabled the discovery of a triterpenoid biosynthetic gene cluster, leading to elucidation of the complete astragaloside biosynthetic pathway. This pathway is characterized by a sequence of selective hydroxylation, epoxidation and glycosylation reactions, which are mediated by three cytochrome P450s, one 2-oxoglutarate-dependent dioxygenase and two glycosyltransferases. Reconstitution of this biosynthetic machinery in Nicotiana benthamiana allowed for heterologous production of astragaloside IV. These findings build a solid foundation for addressing the sourcing issues associated with astragalosides and broaden our understanding of the diversity of terpene biosynthetic gene clusters. Astragaloside IV, the key active compound in Radix Astragali, a medicinal plant used for immunomodulation in Asia and Europe, now has a fully elucidated biosynthetic pathway, enabling its efficient production through synthetic biology.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 11","pages":"1826-1837"},"PeriodicalIF":15.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PlantsPub Date : 2024-10-18DOI: 10.1038/s41477-024-01831-8
Jana Kholová, Milan O. Urban, Miroslava Bavorová, Salvatore Ceccarelli, Lutomia Cosmas, Sabine Desczka, Stefania Grando, Robert Lensink, Eileen Nchanji, Jan Pavlík, Diana Pelaez, Jean-Claude Rubyogo, Louise Sperling, Graham Thiele, Ayat Ullah, Marijn Voorhaar, Erwin Bulte
{"title":"Promoting new crop cultivars in low-income countries requires a transdisciplinary approach","authors":"Jana Kholová, Milan O. Urban, Miroslava Bavorová, Salvatore Ceccarelli, Lutomia Cosmas, Sabine Desczka, Stefania Grando, Robert Lensink, Eileen Nchanji, Jan Pavlík, Diana Pelaez, Jean-Claude Rubyogo, Louise Sperling, Graham Thiele, Ayat Ullah, Marijn Voorhaar, Erwin Bulte","doi":"10.1038/s41477-024-01831-8","DOIUrl":"10.1038/s41477-024-01831-8","url":null,"abstract":"The development of high-yielding, resilient cultivars is the primary goal of many crop breeding programmes, but the uptake of these new cultivars is persistently low in low-income countries. We discuss constraints related to the adoption of crop cultivars and stress the importance of participatory approaches in building trust and promoting the adoption of new technologies.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 11","pages":"1610-1613"},"PeriodicalIF":15.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PlantsPub Date : 2024-10-18DOI: 10.1038/s41477-024-01834-5
{"title":"Non-canonical functions","authors":"","doi":"10.1038/s41477-024-01834-5","DOIUrl":"10.1038/s41477-024-01834-5","url":null,"abstract":"With an increasing ability to understand the complexity of living systems, it becomes more and more evident that well-defined canonical functions of proteins and complexes are intertwined.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 10","pages":"1435-1435"},"PeriodicalIF":15.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01834-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142448101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}