Nature PlantsPub Date : 2024-11-18DOI: 10.1038/s41477-024-01855-0
Shalik Ram Sigdel, Xiangyu Zheng, Flurin Babst, J. Julio Camarero, Shan Gao, Xiaoxia Li, Xiaoming Lu, Jayram Pandey, Binod Dawadi, Jian Sun, Haifeng Zhu, Tao Wang, Eryuan Liang, Josep Peñuelas
{"title":"Accelerated succession in Himalayan alpine treelines under climatic warming","authors":"Shalik Ram Sigdel, Xiangyu Zheng, Flurin Babst, J. Julio Camarero, Shan Gao, Xiaoxia Li, Xiaoming Lu, Jayram Pandey, Binod Dawadi, Jian Sun, Haifeng Zhu, Tao Wang, Eryuan Liang, Josep Peñuelas","doi":"10.1038/s41477-024-01855-0","DOIUrl":"https://doi.org/10.1038/s41477-024-01855-0","url":null,"abstract":"<p>Understanding how climate change influences succession is fundamental for predicting future forest composition. Warming is expected to accelerate species succession at their cold thermal ranges, such as alpine treelines. Here we examined how interactions and successional strategies of the early-successional birch (<i>Betula utilis</i>) and the late-successional fir (<i>Abies spectabilis</i>) affected treeline dynamics by combining plot data with an individual-based treeline model at treelines in the central Himalayas. Fir showed increasing recruitment and a higher upslope shift rate (0.11 ± 0.02 m yr<sup>−1</sup>) compared with birch (0.06 ± 0.03 m yr<sup>−1</sup>) over the past 200 years. Spatial analyses indicate strong interspecies competition when trees were young. Model outputs from various climatic scenarios indicate that fir will probably accelerate its upslope movement with warming, while birch recruitment will decline drastically, forming stable or even retreating treelines. Our findings point to accelerating successional dynamics with late-successional species rapidly outcompeting pioneer species, offering insight into future forest succession and its influences on ecosystem services.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":18.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PlantsPub Date : 2024-11-15DOI: 10.1038/s41477-024-01857-y
Jean-David Rochaix
{"title":"New light on pyrenoid membrane tubules","authors":"Jean-David Rochaix","doi":"10.1038/s41477-024-01857-y","DOIUrl":"https://doi.org/10.1038/s41477-024-01857-y","url":null,"abstract":"The pyrenoid contains internal membrane structures that are required for efficient carbon fixation. The two proteins SAGA1 and MITH1 are necessary for the biogenesis of these membranes and the delivery of bicarbonate to the pyrenoid matrix.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":18.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nature PlantsPub Date : 2024-11-15DOI: 10.1038/s41477-024-01847-0
Jessica H. Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L. Ergun, Eric Franklin, Lianyong Wang, Simona Eicke, Yana Kazachkova, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E. Jinkerson, Samuel C. Zeeman, Alistair J. McCormick, Martin C. Jonikas
{"title":"SAGA1 and MITH1 produce matrix-traversing membranes in the CO2-fixing pyrenoid","authors":"Jessica H. Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L. Ergun, Eric Franklin, Lianyong Wang, Simona Eicke, Yana Kazachkova, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E. Jinkerson, Samuel C. Zeeman, Alistair J. McCormick, Martin C. Jonikas","doi":"10.1038/s41477-024-01847-0","DOIUrl":"https://doi.org/10.1038/s41477-024-01847-0","url":null,"abstract":"<p>Approximately one-third of global CO<sub>2</sub> assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO<sub>2</sub> assimilation in the pyrenoid by delivering concentrated CO<sub>2</sub>, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga <i>Chlamydomonas reinhardtii</i>. Mutants deficient in <i>SAGA1</i> or <i>MITH1</i> lack matrix-traversing membranes and exhibit growth defects under CO<sub>2</sub>-limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant <i>Arabidopsis thaliana</i>, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":null,"pages":null},"PeriodicalIF":18.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}