A root-based N-hydroxypipecolic acid standby circuit to direct immunity and growth of Arabidopsis shoots

IF 13.6 1区 生物学 Q1 PLANT SCIENCES
Ping Xu, Sophia Fundneider, Birgit Lange, Rafał Maksym, Johannes Stuttmann, Anton R. Schäffner
{"title":"A root-based N-hydroxypipecolic acid standby circuit to direct immunity and growth of Arabidopsis shoots","authors":"Ping Xu, Sophia Fundneider, Birgit Lange, Rafał Maksym, Johannes Stuttmann, Anton R. Schäffner","doi":"10.1038/s41477-025-02053-2","DOIUrl":null,"url":null,"abstract":"<p>Soil-borne microorganisms can systemically affect shoot resistance to pathogens relying on jasmonic acid and/or salicylic acid. However, the emanating root triggers in these scenarios remain elusive. Here we identify an <i>N</i>-hydroxypipecolic-acid-(NHP-)directed, salicylic-acid-related mechanism of root-triggered systemic resistance in <i>Arabidopsis</i>, which uses components of systemic acquired resistance known in leaves. However, in contrast to the inductive nature of systemic acquired resistance, FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) continuously synthesizes NHP in roots, while the glucosyltransferase UGT76B1 concomitantly conjugates and immobilizes NHP. Physical grafting experiments and tissue-specific knockouts revealed that the loss of UGT76B1 in roots leads to enhanced NHP release, initiating shoot responses. This counteracting standby FMO1/UGT76B1 circuit is specifically and sensitively modulated by root-associated microorganisms. Endophytic and (hemi)biotrophic fungi induce UGT76B1 degradation and FMO1 expression, resulting in varying levels of NHP being released to the shoot, where this root signal differently modulates defence and growth.</p>","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"98 1","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-025-02053-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil-borne microorganisms can systemically affect shoot resistance to pathogens relying on jasmonic acid and/or salicylic acid. However, the emanating root triggers in these scenarios remain elusive. Here we identify an N-hydroxypipecolic-acid-(NHP-)directed, salicylic-acid-related mechanism of root-triggered systemic resistance in Arabidopsis, which uses components of systemic acquired resistance known in leaves. However, in contrast to the inductive nature of systemic acquired resistance, FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1) continuously synthesizes NHP in roots, while the glucosyltransferase UGT76B1 concomitantly conjugates and immobilizes NHP. Physical grafting experiments and tissue-specific knockouts revealed that the loss of UGT76B1 in roots leads to enhanced NHP release, initiating shoot responses. This counteracting standby FMO1/UGT76B1 circuit is specifically and sensitively modulated by root-associated microorganisms. Endophytic and (hemi)biotrophic fungi induce UGT76B1 degradation and FMO1 expression, resulting in varying levels of NHP being released to the shoot, where this root signal differently modulates defence and growth.

Abstract Image

基于根的n -羟基果酸备用回路对拟南芥幼苗免疫和生长的指导作用
土壤传播的微生物可以系统地影响茎对病原体的抗性,依靠茉莉酸和/或水杨酸。然而,在这些情况下的根源触发因素仍然难以捉摸。在这里,我们确定了一个n -羟基果酸(NHP-)导向的、水杨酸相关的拟南芥根触发系统性抗性的机制,该机制利用了叶片中已知的系统性获得性抗性成分。然而,与系统性获得性抗性的诱导性质相反,黄素依赖的单氧酶1 (FLAVIN-DEPENDENT MONOOXYGENASE 1, FMO1)在根中不断合成NHP,而糖基转移酶UGT76B1则伴随结合并固定NHP。物理嫁接实验和组织特异性敲除表明,根中UGT76B1的缺失导致NHP释放增强,引发茎部反应。这种抵消备用FMO1/UGT76B1电路被根相关微生物特异性和敏感地调节。内生真菌和(半)生物营养真菌诱导UGT76B1降解和FMO1表达,导致不同水平的NHP被释放到茎部,在那里这种根信号不同地调节防御和生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Plants
Nature Plants PLANT SCIENCES-
CiteScore
25.30
自引率
2.20%
发文量
196
期刊介绍: Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信