Nature Plants最新文献

筛选
英文 中文
Accelerated succession in Himalayan alpine treelines under climatic warming 气候变暖下喜马拉雅高山林带的加速演替
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-18 DOI: 10.1038/s41477-024-01855-0
Shalik Ram Sigdel, Xiangyu Zheng, Flurin Babst, J. Julio Camarero, Shan Gao, Xiaoxia Li, Xiaoming Lu, Jayram Pandey, Binod Dawadi, Jian Sun, Haifeng Zhu, Tao Wang, Eryuan Liang, Josep Peñuelas
{"title":"Accelerated succession in Himalayan alpine treelines under climatic warming","authors":"Shalik Ram Sigdel, Xiangyu Zheng, Flurin Babst, J. Julio Camarero, Shan Gao, Xiaoxia Li, Xiaoming Lu, Jayram Pandey, Binod Dawadi, Jian Sun, Haifeng Zhu, Tao Wang, Eryuan Liang, Josep Peñuelas","doi":"10.1038/s41477-024-01855-0","DOIUrl":"10.1038/s41477-024-01855-0","url":null,"abstract":"Understanding how climate change influences succession is fundamental for predicting future forest composition. Warming is expected to accelerate species succession at their cold thermal ranges, such as alpine treelines. Here we examined how interactions and successional strategies of the early-successional birch (Betula utilis) and the late-successional fir (Abies spectabilis) affected treeline dynamics by combining plot data with an individual-based treeline model at treelines in the central Himalayas. Fir showed increasing recruitment and a higher upslope shift rate (0.11 ± 0.02 m yr−1) compared with birch (0.06 ± 0.03 m yr−1) over the past 200 years. Spatial analyses indicate strong interspecies competition when trees were young. Model outputs from various climatic scenarios indicate that fir will probably accelerate its upslope movement with warming, while birch recruitment will decline drastically, forming stable or even retreating treelines. Our findings point to accelerating successional dynamics with late-successional species rapidly outcompeting pioneer species, offering insight into future forest succession and its influences on ecosystem services. Climate warming is accelerating successional dynamics, with late-successional species rapidly outcompeting pioneer species at Himalayan treeline ecotones, offering insight into future forest succession and its influences on ecosystem services.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1909-1918"},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New light on pyrenoid membrane tubules 火绒膜管的新发现
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-15 DOI: 10.1038/s41477-024-01857-y
Jean-David Rochaix
{"title":"New light on pyrenoid membrane tubules","authors":"Jean-David Rochaix","doi":"10.1038/s41477-024-01857-y","DOIUrl":"10.1038/s41477-024-01857-y","url":null,"abstract":"The pyrenoid contains internal membrane structures that are required for efficient carbon fixation. The two proteins SAGA1 and MITH1 are necessary for the biogenesis of these membranes and the delivery of bicarbonate to the pyrenoid matrix.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1852-1853"},"PeriodicalIF":15.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAGA1 and MITH1 produce matrix-traversing membranes in the CO2-fixing pyrenoid SAGA1 和 MITH1 在固着二氧化碳的焦磷酸中产生穿越基质的膜
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-15 DOI: 10.1038/s41477-024-01847-0
Jessica H. Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L. Ergun, Eric Franklin, Lianyong Wang, Simona Eicke, Yana Kazachkova, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E. Jinkerson, Samuel C. Zeeman, Alistair J. McCormick, Martin C. Jonikas
{"title":"SAGA1 and MITH1 produce matrix-traversing membranes in the CO2-fixing pyrenoid","authors":"Jessica H. Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L. Ergun, Eric Franklin, Lianyong Wang, Simona Eicke, Yana Kazachkova, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E. Jinkerson, Samuel C. Zeeman, Alistair J. McCormick, Martin C. Jonikas","doi":"10.1038/s41477-024-01847-0","DOIUrl":"10.1038/s41477-024-01847-0","url":null,"abstract":"Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii. Mutants deficient in SAGA1 or MITH1 lack matrix-traversing membranes and exhibit growth defects under CO2-limiting conditions. Expression of SAGA1 and MITH1 together in a heterologous system, the model plant Arabidopsis thaliana, produces matrix-traversing membranes. Both proteins localize to matrix-traversing membranes. SAGA1 binds to the major matrix component, Rubisco, and is necessary to initiate matrix-traversing membranes. MITH1 binds to SAGA1 and is necessary for extension of membranes through the matrix. Our data suggest that SAGA1 and MITH1 cause membranes to traverse the matrix by creating an adhesive interaction between the membrane and matrix. Our study identifies and characterizes key factors in the biogenesis of pyrenoid matrix-traversing membranes, demonstrates the importance of these membranes to pyrenoid function and marks a key milestone toward pyrenoid engineering into crops for improving yields. Two algal proteins, MITH1 and SAGA1, play key roles in formation of membranes that deliver CO2 to the pyrenoid, a CO2-concentrating organelle. Their discovery marks a key milestone towards engineering a pyrenoid into land plants for improved yields.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"2038-2051"},"PeriodicalIF":15.8,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01847-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres 烟草的全基因组组装揭示了中心粒的遗传和表观遗传景观
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-14 DOI: 10.1038/s41477-024-01849-y
Weikai Chen, Ming Yan, Shaoying Chen, Jie Sun, Jingxuan Wang, Dian Meng, Jun Li, Lili Zhang, Li Guo
{"title":"The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres","authors":"Weikai Chen, Ming Yan, Shaoying Chen, Jie Sun, Jingxuan Wang, Dian Meng, Jun Li, Lili Zhang, Li Guo","doi":"10.1038/s41477-024-01849-y","DOIUrl":"10.1038/s41477-024-01849-y","url":null,"abstract":"Nicotiana benthamiana is a model organism widely adopted in plant biology. Its complete assembly remains unavailable despite several recent improvements. To further improve its usefulness, we generate and phase the complete 2.85 Gb genome assembly of allotetraploid N. benthamiana. We find that although Solanaceae centromeres are widely dominated by Ty3/Gypsy retrotransposons, satellite-based centromeres are surprisingly common in N. benthamiana, with 11 of 19 centromeres featured by megabase-scale satellite arrays. Interestingly, the satellite-enriched and satellite-free centromeres are extensively invaded by distinct Gypsy retrotransposons which CENH3 protein more preferentially occupies, suggestive of their crucial roles in centromere function. We demonstrate that ribosomal DNA is a major origin of centromeric satellites, and mitochondrial DNA could be employed as a core component of the centromere. Subgenome analysis indicates that the emergence of satellite arrays probably drives new centromere formation. Altogether, we propose that N. benthamiana centromeres evolved via neocentromere formation, satellite expansion, retrotransposon enrichment and mtDNA integration. This study generates and phases the complete genome assembly of a model plant Nicotiana benthamiana, revealing insights into the structure, epigenetic landscape and evolutionary dynamics of its centromeres following allotetraploidization.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1928-1943"},"PeriodicalIF":15.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wildfires accelerate shrubification in the Alaskan Arctic tundra 野火加速了阿拉斯加北极苔原的灌木化进程
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-14 DOI: 10.1038/s41477-024-01853-2
{"title":"Wildfires accelerate shrubification in the Alaskan Arctic tundra","authors":"","doi":"10.1038/s41477-024-01853-2","DOIUrl":"10.1038/s41477-024-01853-2","url":null,"abstract":"High-severity wildfires in the Alaskan Arctic tundra promote shrub growth, which drives a fire–greening positive feedback loop. The existence of this feedback loop suggests that wildfires have an important role in the changing tundra landscape amid rapid Arctic warming.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1861-1862"},"PeriodicalIF":15.8,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic induction of fertilization-independent embryogenesis in rice egg cells by paternal-genome-expressed transcription factors 父系基因组表达的转录因子协同诱导水稻卵细胞中不依赖受精的胚胎发生
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-12 DOI: 10.1038/s41477-024-01848-z
Hui Ren, Kyle Shankle, Myeong-Je Cho, Michelle Tjahjadi, Imtiyaz Khanday, Venkatesan Sundaresan
{"title":"Synergistic induction of fertilization-independent embryogenesis in rice egg cells by paternal-genome-expressed transcription factors","authors":"Hui Ren, Kyle Shankle, Myeong-Je Cho, Michelle Tjahjadi, Imtiyaz Khanday, Venkatesan Sundaresan","doi":"10.1038/s41477-024-01848-z","DOIUrl":"10.1038/s41477-024-01848-z","url":null,"abstract":"In flowering plants, rapid activation of the zygotic genome occurs after fertilization1–3, but there is limited knowledge of the molecular pathways underlying embryo initiation4. In rice, a key role is played by the transcription factor BABY BOOM 1 (OsBBM1), initially expressed from the paternal genome1. Ectopic OsBBM1 expression in the egg cell can override the fertilization requirement, giving rise to parthenogenetic progeny5. Here we show that the WOX-family transcription factor DWARF TILLER1 (OsDWT1)/WUSCHEL-LIKE HOMEODOMAIN 9 (OsWOX9A)6, another gene paternally expressed in zygotes, is a strong enhancer of embryo initiation by OsBBM1. Co-expression of OsWOX9A and OsBBM1 in egg cells results in 86–91% parthenogenesis, representing 4- to 15-fold increases over OsBBM1 alone. These results suggest that embryo initiation is promoted by the synergistic action of paternal-genome-expressed transcription factors in the fertilized egg cell. These findings can be utilized for the efficient production of haploids, as well as clonal hybrid seeds in crop plants7,8. The efficient induction of embryos without fertilization, which is important for crop breeding and hybrid seed production, can be achieved by combined expression in the egg of BBM1 and WOX9A, two rice transcription factors normally expressed from the male genome.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1892-1899"},"PeriodicalIF":15.8,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dosage-sensitive maternal siRNAs determine hybridization success in Capsella 剂量敏感的母体 siRNA 决定了毛壳菌的杂交成功率
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-11 DOI: 10.1038/s41477-024-01844-3
Katarzyna Dziasek, Juan Santos-González, Kai Wang, Yichun Qiu, Jiali Zhu, Diana Rigola, Koen Nijbroek, Claudia Köhler
{"title":"Dosage-sensitive maternal siRNAs determine hybridization success in Capsella","authors":"Katarzyna Dziasek, Juan Santos-González, Kai Wang, Yichun Qiu, Jiali Zhu, Diana Rigola, Koen Nijbroek, Claudia Köhler","doi":"10.1038/s41477-024-01844-3","DOIUrl":"10.1038/s41477-024-01844-3","url":null,"abstract":"Hybrid seed failure arising from wide crosses between plant species is a recurring obstacle in plant breeding, impeding the transfer of desirable traits. This postzygotic reproductive barrier primarily occurs in the endosperm, a tissue that nourishes the embryo and functions similarly to the placenta in mammals. We found that incompatible seeds show a loss of DNA methylation and chromatin condensation in the endosperm, similar to seeds lacking maternal RNA polymerase IV activity. This similarity is linked to a decrease in small interfering RNAs in the endosperm (sirenRNAs), maternal RNA polymerase IV-dependent short interfering RNAs that regulate DNA methylation. Several AGAMOUS-like MADS-box transcription factor genes (AGLs), key regulators of endosperm development, are targeted by sirenRNAs in cis and in trans. This finding aligns with the enrichment of AGL target genes among deregulated genes. We propose that hybrid seed failure results from reduced maternal sirenRNAs combined with increased AGL expression, leading to abnormal gene regulation in the endosperm. Hybrid seed failure in plant breeding arises from disrupted endosperm development. Reduced maternal sirenRNAs and increased expression of AGL transcription factors cause abnormal gene regulation in the endosperm, preventing successful wide species crosses.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1969-1983"},"PeriodicalIF":15.8,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01844-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence for widespread thermal acclimation of canopy photosynthesis 树冠光合作用普遍热适应的证据
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-08 DOI: 10.1038/s41477-024-01846-1
Jiangong Liu, Youngryel Ryu, Xiangzhong Luo, Benjamin Dechant, Benjamin D. Stocker, Trevor F. Keenan, Pierre Gentine, Xing Li, Bolun Li, Sandy P. Harrison, Iain Colin Prentice
{"title":"Evidence for widespread thermal acclimation of canopy photosynthesis","authors":"Jiangong Liu, Youngryel Ryu, Xiangzhong Luo, Benjamin Dechant, Benjamin D. Stocker, Trevor F. Keenan, Pierre Gentine, Xing Li, Bolun Li, Sandy P. Harrison, Iain Colin Prentice","doi":"10.1038/s41477-024-01846-1","DOIUrl":"10.1038/s41477-024-01846-1","url":null,"abstract":"Plants acclimate to temperature by adjusting their photosynthetic capacity over weeks to months. However, most evidence for photosynthetic acclimation derives from leaf-scale experiments. Here we address the scarcity of evidence for canopy-scale photosynthetic acclimation by examining the correlation between maximum photosynthetic rates (Amax,2,000) and growth temperature ( $$overline{{T}_{rm{air}}}$$ ) across a range of concurrent temperatures and canopy foliage quantity, using data from >200 eddy covariance sites. We detect widespread thermal acclimation of canopy-scale photosynthesis, demonstrated by enhanced Amax,2,000 under higher $$overline{{T}_{rm{air}}}$$ , across flux sites with adequate water availability. A 14-day period is identified as the most relevant timescale for acclimation across all sites, with a range of 12–25 days for different plant functional types. The mean apparent thermal acclimation rate across all ecosystems is 0.41 (−0.38–1.04 for 5th–95th percentile range) µmol m−2 s−1 °C−1, with croplands showing the largest acclimation rates and grasslands the lowest. Incorporating an optimality-based prediction of leaf photosynthetic capacities into a biochemical photosynthesis model is shown to improve the representation of thermal acclimation. Our results underscore the critical need for enhanced understanding and modelling of canopy-scale photosynthetic capacity to accurately predict plant responses to warmer growing seasons. Analysis of the FLUXNET2015 dataset provides observational evidence for widespread thermal acclimation of canopy-scale photosynthesis and its timescales across diverse biomes, improving its representation in land surface models.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1919-1927"},"PeriodicalIF":15.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41477-024-01846-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regional fire–greening positive feedback loops in Alaskan Arctic tundra 阿拉斯加北极苔原的区域火灾-绿化正反馈回路
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-08 DOI: 10.1038/s41477-024-01850-5
Dong Chen, Cheng Fu, Liza K. Jenkins, Jiaying He, Zhihao Wang, Randi R. Jandt, Gerald V. Frost, Allison Bredder, Logan T. Berner, Tatiana V. Loboda
{"title":"Regional fire–greening positive feedback loops in Alaskan Arctic tundra","authors":"Dong Chen, Cheng Fu, Liza K. Jenkins, Jiaying He, Zhihao Wang, Randi R. Jandt, Gerald V. Frost, Allison Bredder, Logan T. Berner, Tatiana V. Loboda","doi":"10.1038/s41477-024-01850-5","DOIUrl":"10.1038/s41477-024-01850-5","url":null,"abstract":"Arctic tundra has experienced rapid warming, outpacing global averages, leading to significant greening whose primary drivers include widespread shrubification. Here we confirm that a fire–greening positive feedback loop is evident across the Alaskan tundra, and evidence suggests that this feedback loop is dominated by the fire–shrub interactions. We show that tundra wildfires, especially those with higher severity, play a critical role in boosting the overall greening of the tundra, often by enhancing upright deciduous shrub growth or establishment but sometimes by inducing increases in other vascular biomass. In addition, fire–greening interactions vary greatly within different tundra subregions, a likely consequence of the spatial heterogeneity in vegetation composition, climatic and geophysical conditions. Arctic warming has led to widespread greening across the tundra. Utilizing remote-sensing and field data, this study identifies a positive fire–greening feedback loop operating across regional scales and highlights the emerging issue of wildfires in one of Earth’s largest carbon sinks.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 12","pages":"1886-1891"},"PeriodicalIF":15.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu-miRNA stress relievers Cu-miRNA 压力缓解剂
IF 15.8 1区 生物学
Nature Plants Pub Date : 2024-11-07 DOI: 10.1038/s41477-024-01868-9
Jun Lyu
{"title":"Cu-miRNA stress relievers","authors":"Jun Lyu","doi":"10.1038/s41477-024-01868-9","DOIUrl":"10.1038/s41477-024-01868-9","url":null,"abstract":"","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 11","pages":"1616-1616"},"PeriodicalIF":15.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信