Nature Catalysis最新文献

筛选
英文 中文
Solid electrolyte reactor for nitrate-to-ammonia 硝酸制氨固体电解质反应器
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-24 DOI: 10.1038/s41929-024-01223-3
Yuting Wang, Bin Zhang
{"title":"Solid electrolyte reactor for nitrate-to-ammonia","authors":"Yuting Wang, Bin Zhang","doi":"10.1038/s41929-024-01223-3","DOIUrl":"10.1038/s41929-024-01223-3","url":null,"abstract":"Electrochemical nitrate reduction to ammonia is a promising approach for waste conversion, yet the use of a concentrated supporting electrolyte creates a product separation issue. Now, a porous solid electrolyte reactor with a cation shielding effect is reported for nitrate wastewater treatment and the production of pure ammonia.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"959-960"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking C–C cleavage in the electrochemical toolbox 打开电化学工具箱中的 C-C 裂解功能
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-24 DOI: 10.1038/s41929-024-01217-1
Nikolay Kornienko
{"title":"Unlocking C–C cleavage in the electrochemical toolbox","authors":"Nikolay Kornienko","doi":"10.1038/s41929-024-01217-1","DOIUrl":"10.1038/s41929-024-01217-1","url":null,"abstract":"Electrifying the fragmentation of hydrocarbons is an emerging challenge in the context of decarbonizing the chemical industry. To this end, competing electrocatalytic C–C cleavage and oxidation pathways of butane were investigated.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"957-958"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbon conversion on biophotonic leaf 生物光子叶片上的碳转化
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-24 DOI: 10.1038/s41929-024-01216-2
Jinhyeong Jang, Elena A. Rozhkova
{"title":"Carbon conversion on biophotonic leaf","authors":"Jinhyeong Jang, Elena A. Rozhkova","doi":"10.1038/s41929-024-01216-2","DOIUrl":"10.1038/s41929-024-01216-2","url":null,"abstract":"A photodiode can trigger bias-free redox reactions but is often hindered by thermodynamic barriers. Now, a bacteria-conjugated silicon biophotochemical diode allows simultaneous conversion of various carbon molecules with high efficacy.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"953-954"},"PeriodicalIF":42.8,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142313978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cation effect on the elementary steps of the electrochemical CO reduction reaction on Cu 阳离子对 Cu 上电化学 CO 还原反应基本步骤的影响
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-23 DOI: 10.1038/s41929-024-01227-z
Yifei Xu, Zhaoming Xia, Wenqiang Gao, Hai Xiao, Bingjun Xu
{"title":"Cation effect on the elementary steps of the electrochemical CO reduction reaction on Cu","authors":"Yifei Xu, Zhaoming Xia, Wenqiang Gao, Hai Xiao, Bingjun Xu","doi":"10.1038/s41929-024-01227-z","DOIUrl":"10.1038/s41929-024-01227-z","url":null,"abstract":"The nature of the cations in an electrolyte has a substantial impact on the performance of the electrochemical CO2 and CO reduction reaction (CO(2)RR), however, its mechanism at the molecular level remains the subject of debate. Major gaps in our understanding include how cations affect key physicochemical variables at electrochemical interfaces and the elementary steps of the CO(2)RR. In this work, we have quantitatively determined the impact of cations on the enthalpy and entropy of CO adsorption on Cu under electrochemical conditions. CO adsorption becomes increasingly unfavourable in the sequence Li+ > Na+ > K+ > Cs+ with a substantial enthalpy–entropy compensation effect. Importantly, cations affect the stability of the initial and transition states of the CORR in opposite directions. Our results provide insights into the effect of cations on individual elementary steps in the CORR and demonstrate that the ability to stabilize the transition state in the conversion of adsorbed CO is a decisive factor. The mechanism of electrocatalytic CO/CO2 reduction on Cu surfaces is complex and its various mechanisms remain under debate, including the important role of cations in the electrolyte. Here the authors quantitatively determine the impact of alkali cations on the thermodynamics of CO adsorption under electrochemical conditions and the activation parameters of the rate-determining step.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1120-1129"},"PeriodicalIF":42.8,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142276783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ammonia synthesis via an engineered nitrogenase assembly pathway in Escherichia coli 大肠杆菌通过改造的氮酶组装途径合成氨
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-19 DOI: 10.1038/s41929-024-01229-x
Joseph B. Solomon, Chi Chung Lee, Yiling A. Liu, Calder Duffin, Markus W. Ribbe, Yilin Hu
{"title":"Ammonia synthesis via an engineered nitrogenase assembly pathway in Escherichia coli","authors":"Joseph B. Solomon, Chi Chung Lee, Yiling A. Liu, Calder Duffin, Markus W. Ribbe, Yilin Hu","doi":"10.1038/s41929-024-01229-x","DOIUrl":"10.1038/s41929-024-01229-x","url":null,"abstract":"Heterologous expression of nitrogenase has been actively pursued because of the far-reaching impact of this enzyme on agriculture, energy and the environment. However, isolation of an active two-component, metallocentre-containing nitrogenase from a non-diazotrophic host has yet to be accomplished. Here we report the heterologous synthesis of an active molybdenum-nitrogenase by combining genes from Azotobacter vinelandii and Methanosarcina acetivorans in Escherichia coli. Metal, activity and electron paramagnetic resonance analyses demonstrate the integrity of the metallocentres in the purified nitrogenase enzyme; whereas growth, nanoscale secondary ion mass spectrometry and nuclear magnetic resonance experiments illustrate diazotrophic growth and 15N enrichment by the E. coli expression strain, and accumulation of extracellular ammonia upon deletion of the ammonia transporter that permits incorporation of thus-generated nitrogen into the cellular mass of a non-diazotrophic E. coli strain. As such, this study provides a crucial prototype system that could be optimized/modified to enable future transgenic expression and biotechnological adaptations of nitrogenase. Heterologous expression of an active, metallocentre-containing nitrogenase in a non-diazotrophic host is challenging. Now, the heterologous biosynthetic pathway of Mo-nitrogenase is pieced together in Escherichia coli using genes from Azotobacter vinelandii and Methanosarcina acetivorans.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1130-1141"},"PeriodicalIF":42.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis 揭示用于合成氨的液态铜-镓催化剂中的金属迁移率
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-19 DOI: 10.1038/s41929-024-01219-z
Karma Zuraiqi, Yichao Jin, Caiden J. Parker, Jaydon Meilak, Nastaran Meftahi, Andrew J. Christofferson, Salvy P. Russo, Michelle J. S. Spencer, Huai Yong Zhu, Lizhuo Wang, Jun Huang, Rosalie K. Hocking, Ken Chiang, Sarina Sarina, Torben Daeneke
{"title":"Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis","authors":"Karma Zuraiqi, Yichao Jin, Caiden J. Parker, Jaydon Meilak, Nastaran Meftahi, Andrew J. Christofferson, Salvy P. Russo, Michelle J. S. Spencer, Huai Yong Zhu, Lizhuo Wang, Jun Huang, Rosalie K. Hocking, Ken Chiang, Sarina Sarina, Torben Daeneke","doi":"10.1038/s41929-024-01219-z","DOIUrl":"10.1038/s41929-024-01219-z","url":null,"abstract":"The outlook for sustainable economic and ecological growth projects an ammonia economy as a key enabler to the energy transition landscape. The predominance of the Haber–Bosch process, however, as the current industrial process for producing ammonia subdues the sustainability of establishing an energy route predicated on ammonia. Here we capitalize on the inherent atomic structure of liquid metal alloys and the ability to modulate the electronic and geometric structures of liquid metal catalysts to drive the thermocatalytic synthesis of ammonia. By exploiting the mobility of the metal atoms in the liquid metal configuration and purposefully designing disordered metal catalysts, we provide insights into designing future transition metal-based catalysts that produce ammonia from gaseous nitrogen and hydrogen under mild operating conditions. The use of a molten Cu–Ga catalyst offers a dynamic metal complex with synergistic advantages that lift the activity of its constituent elements, exceeding the activity of a control Ru-based catalyst. The traditional Haber–Bosch process as well as recent alternative approaches based on photo- or electrocatalysis all rely on solid catalysts to convert nitrogen into ammonia. Here the authors disclose an effective method for the synthesis of this crucial commodity based on a Cu–Ga liquid metal catalyst instead.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"1044-1052"},"PeriodicalIF":42.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol 消除支撑分子催化剂上氧化还原介导的电子传递机制,实现二氧化碳到乙醇的转化
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-13 DOI: 10.1038/s41929-024-01225-1
Maryam Abdinejad, Amirhossein Farzi, Robin Möller-Gulland, Fokko Mulder, Chengyu Liu, Junming Shao, Jasper Biemolt, Marc Robert, Ali Seifitokaldani, Thomas Burdyny
{"title":"Eliminating redox-mediated electron transfer mechanisms on a supported molecular catalyst enables CO2 conversion to ethanol","authors":"Maryam Abdinejad, Amirhossein Farzi, Robin Möller-Gulland, Fokko Mulder, Chengyu Liu, Junming Shao, Jasper Biemolt, Marc Robert, Ali Seifitokaldani, Thomas Burdyny","doi":"10.1038/s41929-024-01225-1","DOIUrl":"10.1038/s41929-024-01225-1","url":null,"abstract":"Molecular catalysts play a significant role in chemical transformations, utilizing changes in redox states to facilitate reactions. To date molecular electrocatalysts have efficiently produced single-carbon products from CO2 but have struggled to achieve a carbon–carbon coupling step. Conversely, copper catalysts can enable carbon–carbon coupling, but lead to broad C2+ product spectra. Here we subvert the traditional redox-mediated reaction mechanisms of organometallic compounds through a heterogeneous nickel-supported iron tetraphenylporphyrin electrocatalyst, facilitating electrochemical carbon–carbon coupling to produce ethanol. This represents a marked behavioural shift compared with carbon-supported metalloporphyrins. Extending the approach to a three-dimensional porous nickel support with adsorbed iron tetraphenylporphyrin, we attain ethanol Faradaic efficiencies of 68% ± 3.2% at −0.3 V versus a reversible hydrogen electrode (pH 7.7) with partial ethanol current densities of −21 mA cm−2. Separately we demonstrate maintained ethanol production over 60 h of operation. Further consideration of the wide parameter space of molecular catalyst and metal electrodes shows promise for additional chemistries and achievable metrics. The electrochemical reduction of CO2 on organometallic catalysts is commonly limited to two-electron products. Now, an iron tetraphenylporphyrin catalyst immobilized onto a nickel electrode is shown to achieve a Faradaic efficiency for ethanol of 68% due to the strong electronic coupling between the catalyst and the support.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1109-1119"},"PeriodicalIF":42.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142174943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enantioselective Chan–Lam S-arylation of sulfenamides 磺酰胺的对映选择性 Chan-Lam S- 芳基化反应
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-09 DOI: 10.1038/s41929-024-01213-5
Qingjin Liang, Xinping Zhang, Madeline E. Rotella, Zeyu Xu, Marisa C. Kozlowski, Tiezheng Jia
{"title":"Enantioselective Chan–Lam S-arylation of sulfenamides","authors":"Qingjin Liang, Xinping Zhang, Madeline E. Rotella, Zeyu Xu, Marisa C. Kozlowski, Tiezheng Jia","doi":"10.1038/s41929-024-01213-5","DOIUrl":"10.1038/s41929-024-01213-5","url":null,"abstract":"Sulfur stereogenic molecules have a significant impact on drug development. Among them, sulfilimines are chiral molecules bearing S(IV) stereocentres, which exhibit great value in chemistry and biology but have so far been synthetically challenging to achieve. Similarly, it has also been a challenge to control the stereochemistry in Chan–Lam coupling, which has been widely used to construct C–N, C–O and C–S bonds by coupling nucleophiles with boronic acids using copper complexes. Here we report a highly chemoselective and enantioselective Chan–Lam S-arylation of sulfenamides with arylboronic acids to deliver an array of thermodynamically disfavoured aryl sulfilimines containing a sulfur stereocentre. A copper catalyst from a 2-pyridyl N-phenyl dihydroimidazole ligand has been designed that enables effective enantiocontrol by means of a well-defined chiral environment and high reactivity that outcompetes the background racemic transformation. A combined experimental and computational study establishes the reaction mechanism and unveils the origin of chemoselectivity and stereoselectivity. Sulfilimines are a class of chiral molecules that bear S(IV) stereocentres, which are of high value in drug discovery but difficult to synthesize. Now the authors report a chemo- and enantioselective Chan–Lam S-arylation of sulfenamides with arylboronic acids that delivers diaryl and alkyl aryl sulfilimines.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 9","pages":"1010-1020"},"PeriodicalIF":42.8,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142158829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The structural basis of pyridoxal-5′-phosphate-dependent β-NAD-alkylating enzymes 依赖吡哆醛-5′-磷酸的β-NAD-烷基化酶的结构基础
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-09-02 DOI: 10.1038/s41929-024-01221-5
Takayoshi Awakawa, Takahiro Mori, Lena Barra, Yusef Ahmed, Richiro Ushimaru, Yaojie Gao, Naruhiko Adachi, Toshiya Senda, Tohru Terada, Dean J. Tantillo, Ikuro Abe
{"title":"The structural basis of pyridoxal-5′-phosphate-dependent β-NAD-alkylating enzymes","authors":"Takayoshi Awakawa, Takahiro Mori, Lena Barra, Yusef Ahmed, Richiro Ushimaru, Yaojie Gao, Naruhiko Adachi, Toshiya Senda, Tohru Terada, Dean J. Tantillo, Ikuro Abe","doi":"10.1038/s41929-024-01221-5","DOIUrl":"10.1038/s41929-024-01221-5","url":null,"abstract":"SbzP is a unique pyridoxal-5′-phosphate-dependent enzyme, which catalyses a [3+2] annulation between the pyridinium ring of β-nicotinamide adenine dinucleotide (β-NAD) and an electron rich β,γ-unsaturated quinonoid derived from S-adenosylmethionine in natural product azaindane antibiotics biosynthesis. The SbzP-mediated annulation has been proposed to be a rare tandem C–C bond formation, but its structural basis and catalytic mechanism remain largely unknown. Here we report the β-NAD-complexed structure of PseP (SbzP homologue), identified by cryo-electron microscopy. Structure-based mutagenesis, stopped-flow analysis, thermal shift and surface plasmon resonance analysis identified the important residues for the substrate binding. Molecular dynamics simulations provided insights regarding how the enzyme orients the Cγ of the unsaturated quinonoid to β-NAD. In addition, density functional theory calculations confirmed that the proposed stepwise mechanism is more likely than a pericyclization mechanism. This study provides the structural basis of a pyridoxal-5′-phosphate-dependent enzyme that catalyses nucleophilic Cγ addition and β-NAD processing in natural product biosynthesis. Recently, the pyridoxal-5′-phosphate-dependent enzyme SbzP was reported to catalyse a [3+2]-annulation reaction yielding β-NAD-derived antibiotics. Now, cryo-electron microscopy structures of a stable homologue and computational simulations provide structural and mechanistic insights into this enzymatic reaction.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1099-1108"},"PeriodicalIF":42.8,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-024-01221-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states 机器学习生成的动力学模型能准确描述细胞内的代谢状态
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2024-08-30 DOI: 10.1038/s41929-024-01220-6
Subham Choudhury, Bharath Narayanan, Michael Moret, Vassily Hatzimanikatis, Ljubisa Miskovic
{"title":"Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states","authors":"Subham Choudhury, Bharath Narayanan, Michael Moret, Vassily Hatzimanikatis, Ljubisa Miskovic","doi":"10.1038/s41929-024-01220-6","DOIUrl":"10.1038/s41929-024-01220-6","url":null,"abstract":"Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in Escherichia coli. It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology. Despite the availability of large omics datasets, determining intracellular metabolic states is challenging. Now a generative machine learning framework called RENAISSANCE has been developed to estimate missing kinetic parameters and determine time-resolved metabolic reaction rates and metabolite concentrations without requiring training data.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 10","pages":"1086-1098"},"PeriodicalIF":42.8,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-024-01220-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信