Nature Catalysis最新文献

筛选
英文 中文
Selectively monitoring the operando temperature of active metal nanoparticles during catalytic reactions by X-ray absorption nanothermometry
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-04 DOI: 10.1038/s41929-025-01295-9
Matthias Filez, Valentijn De Coster, Hilde Poelman, Valerie Briois, Anthony Beauvois, Jolien Dendooven, Maarten B. J. Roeffaers, Vladimir Galvita, Christophe Detavernier
{"title":"Selectively monitoring the operando temperature of active metal nanoparticles during catalytic reactions by X-ray absorption nanothermometry","authors":"Matthias Filez, Valentijn De Coster, Hilde Poelman, Valerie Briois, Anthony Beauvois, Jolien Dendooven, Maarten B. J. Roeffaers, Vladimir Galvita, Christophe Detavernier","doi":"10.1038/s41929-025-01295-9","DOIUrl":"10.1038/s41929-025-01295-9","url":null,"abstract":"Heat involved in catalytic reactions can influence the local temperature and performance of the active site, potentially causing catalyst degradation and runaway scenarios. Yet, broadly applicable thermometry methods to selectively probe the temperature of the catalytically active phase—where reactions take place—are generally lacking. Here we explore extended X-ray absorption fine-structure thermometry to monitor the operando temperature of active Ni nanoparticles, fully deconvoluted from their metal-oxide support. During dry reforming of methane, the reaction’s endothermicity causes Ni nanoparticles to become local heat sinks with their temperature deviating 90 °C from the reactor temperature. By thermometry at the single nanoparticle level, we chart the energy balance of nanoparticles and relate their temperature to reaction kinetics. Covering the full temperature range relevant to catalysis, this broadly applicable method enables temperature monitoring of individual catalyst components separately. Applying extended X-ray absorption fine-structure thermometry to existing datasets worldwide can generate enhanced understanding on reaction-induced temperature phenomena in heterogeneous catalysis. Monitoring the temperature of a catalyst’s active site during reactions can offer important insights into reactivity, but broadly applicable methods are lacking. Here the authors evaluate the potential of extended X-ray absorption fine-structure thermometry to observe variations in the temperature of nickel nanoparticles throughout representative gas–solid reactions.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"187-195"},"PeriodicalIF":42.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perovskite-driven solar C2 hydrocarbon synthesis from CO2
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-02-03 DOI: 10.1038/s41929-025-01292-y
Virgil Andrei, Inwhan Roh, Jia-An Lin, Joshua Lee, Yu Shan, Chung-Kuan Lin, Steve Shelton, Erwin Reisner, Peidong Yang
{"title":"Perovskite-driven solar C2 hydrocarbon synthesis from CO2","authors":"Virgil Andrei, Inwhan Roh, Jia-An Lin, Joshua Lee, Yu Shan, Chung-Kuan Lin, Steve Shelton, Erwin Reisner, Peidong Yang","doi":"10.1038/s41929-025-01292-y","DOIUrl":"10.1038/s41929-025-01292-y","url":null,"abstract":"Photoelectrochemistry (PEC) presents a direct pathway to solar fuel synthesis by integrating light absorption and catalysis into compact electrodes. Yet, PEC hydrocarbon production remains elusive due to high catalytic overpotentials and insufficient semiconductor photovoltage. Here we demonstrate ethane and ethylene synthesis by interfacing lead halide perovskite photoabsorbers with suitable copper nanoflower electrocatalysts. The resulting perovskite photocathodes attain a 9.8% Faradaic yield towards C2 hydrocarbon production at 0 V against the reversible hydrogen electrode. The catalyst and perovskite geometric surface areas strongly influence C2 photocathode selectivity, which indicates a role of local current density in product distribution. The thermodynamic limitations of water oxidation are overcome by coupling the photocathodes to Si nanowire photoanodes for glycerol oxidation. These unassisted perovskite–silicon PEC devices attain partial C2 hydrocarbon photocurrent densities of 155 µA cm−2, 200-fold higher than conventional perovskite–BiVO4 artificial leaves for water and CO2 splitting. These insights establish perovskite semiconductors as a versatile platform towards PEC multicarbon synthesis. Hydrocarbon selectivity in photoelectrochemical CO2 reduction has been limited due to a lack of low-overpotential catalysts and high-photovoltage semiconductors. Here Cu nanoflowers are interfaced with perovskite light absorbers for bias-free conversion of CO2 to ethane and ethylene coupled to water or glycerol oxidation.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 2","pages":"137-146"},"PeriodicalIF":42.8,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01292-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reaching out
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-29 DOI: 10.1038/s41929-025-01297-7
{"title":"Reaching out","authors":"","doi":"10.1038/s41929-025-01297-7","DOIUrl":"10.1038/s41929-025-01297-7","url":null,"abstract":"This Editorial provides a few highlights from the present issue of Nature Catalysis and reflects on some of the achievements from the editorial team in 2024.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"1-1"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-025-01297-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzymatic catalysis meets radical coupling
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-29 DOI: 10.1038/s41929-025-01290-0
Chenyu Wang
{"title":"Enzymatic catalysis meets radical coupling","authors":"Chenyu Wang","doi":"10.1038/s41929-025-01290-0","DOIUrl":"10.1038/s41929-025-01290-0","url":null,"abstract":"","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"8-8"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of the human-in-the-loop in emerging self-driving laboratories for heterogeneous catalysis
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-29 DOI: 10.1038/s41929-024-01275-5
Christoph Scheurer, Karsten Reuter
{"title":"Role of the human-in-the-loop in emerging self-driving laboratories for heterogeneous catalysis","authors":"Christoph Scheurer, Karsten Reuter","doi":"10.1038/s41929-024-01275-5","DOIUrl":"10.1038/s41929-024-01275-5","url":null,"abstract":"Self-driving laboratories (SDLs) represent a cutting-edge convergence of machine learning with laboratory automation. SDLs operate in active learning loops, in which a machine learning algorithm plans experiments that are subsequently executed by increasingly automated (robotic) modules. Here we present our view on emerging SDLs for accelerated discovery and process optimization in heterogeneous catalysis. We argue against the paradigm of full automation and the goal of keeping the human out of the loop. Based on analysis of the involved workflows, we instead conclude that crucial advances will come from establishing fast proxy experiments and re-engineering existing apparatuses and measurement protocols. Industrially relevant use cases will also require humans to be kept in the loop for continuous decision-making. In turn, active learning algorithms will have to be advanced that can flexibly deal with corresponding adaptations of the design space and varying information content and noise in the acquired data. Uses of machine learning and automation are increasing and these techniques are becoming popular in catalysis research. This Perspective discusses how active learning workflows and human intervention should be optimized to ensure the most efficient progress for emerging self-driving laboratories performing heterogeneous catalysis research.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"13-19"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clarifying cation control
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-29 DOI: 10.1038/s41929-024-01284-4
Michael J. Janik
{"title":"Clarifying cation control","authors":"Michael J. Janik","doi":"10.1038/s41929-024-01284-4","DOIUrl":"10.1038/s41929-024-01284-4","url":null,"abstract":"Carbon dioxide electrocatalytic reduction rates are strongly impacted by the choice of electrolyte, but most studies have focused on aqueous systems. It is now reported that in non-aqueous solvents, smaller alkylammonium cations better stabilize the CO2δ– transition state on Ag electrodes.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"9-10"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular basis of activity changes in acid catalysis within nanoconfined water
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-29 DOI: 10.1038/s41929-025-01296-8
{"title":"Molecular basis of activity changes in acid catalysis within nanoconfined water","authors":"","doi":"10.1038/s41929-025-01296-8","DOIUrl":"10.1038/s41929-025-01296-8","url":null,"abstract":"The behaviour of nanoconfined water can be very different from that of the bulk and is challenging to understand at a molecular level. Now, molecular simulations and kinetic experiments provide insight into the increased activity of hydronium ions in water nanoconfined within zeolite pores.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"11-12"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasma-driven decentralized production of essential chemicals
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-29 DOI: 10.1038/s41929-024-01283-5
Maria L. Carreon
{"title":"Plasma-driven decentralized production of essential chemicals","authors":"Maria L. Carreon","doi":"10.1038/s41929-024-01283-5","DOIUrl":"10.1038/s41929-024-01283-5","url":null,"abstract":"Non-thermal plasma offers a remarkable alternative to traditional catalysis methods, meeting the rising demands for essential chemicals like fertilizers and fuels. This Comment explores how this approach can support sustainability goals by promoting economic growth, and decentralizing chemical production processes.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"2-7"},"PeriodicalIF":42.8,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An efficient catalytic route in haem peroxygenases mediated by O2/small-molecule reductant pairs for sustainable applications
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-28 DOI: 10.1038/s41929-024-01281-7
Di Deng, Zhihui Jiang, Lixin Kang, Langxing Liao, Xiaodong Zhang, Yuben Qiao, Yang Zhou, Liulin Yang, Binju Wang, Aitao Li
{"title":"An efficient catalytic route in haem peroxygenases mediated by O2/small-molecule reductant pairs for sustainable applications","authors":"Di Deng, Zhihui Jiang, Lixin Kang, Langxing Liao, Xiaodong Zhang, Yuben Qiao, Yang Zhou, Liulin Yang, Binju Wang, Aitao Li","doi":"10.1038/s41929-024-01281-7","DOIUrl":"10.1038/s41929-024-01281-7","url":null,"abstract":"Haem peroxygenases are attractive biocatalysts for incorporating oxygen into organic molecules using H2O2. However, their practical applications are hindered by irreversible oxidative inactivation due to exogenous H2O2 usage. Here we present an alternative catalytic route in haem peroxygenases that uses O2 and small-molecule reductants such as ascorbic acid and dehydroascorbic acid (DHA) to drive reactions. Our experimental and computational studies indicated that DHAA, the hydrated form of DHA, serves as the key co-substrate that activates oxygen to generate the active oxyferryl haem compound I. We also demonstrate the broad applicability of this O2/reductant-dependent route across various haem peroxygenases, highlighting its biological significance for mono-oxygenase functionality. Importantly, this innovative route avoids the use of H2O2, thereby preventing the risk of irreversible enzyme inactivation. Finally, scaled-up reactions yielded chiral, value-added products with excellent productivity, underscoring the synthetic potential of this developed peroxygenase technology for sustainable chemical transformations. H2O2-dependent haem-peroxygenase-catalysed C–H bond oxyfunctionalization reactions have attracted much attention, but elevated concentrations of H2O2 are detrimental to the enzyme. Now, it is reported that this biocatalyst can operate via an alternative pathway using O2 and small-molecule reductants.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"20-32"},"PeriodicalIF":42.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ electrochemical production of solid peroxide from urine 用尿液原位电化学生产固体过氧化物
IF 42.8 1区 化学
Nature Catalysis Pub Date : 2025-01-20 DOI: 10.1038/s41929-024-01277-3
Xinjian Shi, Yue Jiang, Bailin Zeng, Zhuoyue Sun, Maojin Yun, Peng Lv, Yu Jia, Xiaolin Zheng
{"title":"In situ electrochemical production of solid peroxide from urine","authors":"Xinjian Shi, Yue Jiang, Bailin Zeng, Zhuoyue Sun, Maojin Yun, Peng Lv, Yu Jia, Xiaolin Zheng","doi":"10.1038/s41929-024-01277-3","DOIUrl":"10.1038/s41929-024-01277-3","url":null,"abstract":"The selective extraction of urea from urine under mild conditions is essential for urban wastewater treatment. Here we devise an in situ electrochemical technique that converts urea, a nitrogen-rich waste, into percarbamide, a crystalline peroxide derivative of urea. This process simultaneously facilitates urine treatment and transforms waste into a valuable product. Using modified graphitic carbon-based catalysts, which are engineered with optimized active sites and structures, the system solidifies hydrogen peroxide and accelerates urea conversion. Precise control of temperature and urea concentration further enhances catalytic performance. The optimized process achieves near 100% purity in percarbamide precipitation from both human and mammalian urine. The collected percarbamide demonstrates remarkable potential for applications in various domains. This approach establishes a closed-loop system for production, utilization and recovery, offering a scalable solution for large-scale urine treatment with important economic and environmental value. The extraction of urea is an important part of wastewater purification and a potential source of valuable fixed nitrogen. Here the authors combine electrocatalytic oxygen reduction with precipitation of urea from urine in the form of a solid peroxide (percarbamide) and demonstrate several potential applications.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":"67-78"},"PeriodicalIF":42.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142990880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信