Semiconductors in pores

IF 44.6 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zhuo Jiang, Xiaofan Shi, Hexiang Deng
{"title":"Semiconductors in pores","authors":"Zhuo Jiang, Xiaofan Shi, Hexiang Deng","doi":"10.1038/s41929-025-01385-8","DOIUrl":null,"url":null,"abstract":"The reduction of carbon dioxide (CO2) to value-added products using sunlight is an attractive technology, especially if multi-carbon products are yielded. Now, the efficient photocatalytic conversion of CO2 to ethylene is demonstrated by filling the pores of a copper-based metal–organic framework with semiconductor nanoparticles.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 7","pages":"631-632"},"PeriodicalIF":44.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-025-01385-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The reduction of carbon dioxide (CO2) to value-added products using sunlight is an attractive technology, especially if multi-carbon products are yielded. Now, the efficient photocatalytic conversion of CO2 to ethylene is demonstrated by filling the pores of a copper-based metal–organic framework with semiconductor nanoparticles.

Abstract Image

Abstract Image

孔隙中的半导体
利用阳光将二氧化碳(CO2)还原为增值产品是一项有吸引力的技术,特别是在生产多碳产品的情况下。现在,通过用半导体纳米颗粒填充铜基金属有机骨架的孔隙,证明了二氧化碳到乙烯的有效光催化转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信