Molecular BreedingPub Date : 2025-02-15eCollection Date: 2025-02-01DOI: 10.1007/s11032-025-01548-2
Bai Gao, Yiran Wang, Jing Qu, Ming Miao, Yang Zhao, Siyan Liu, Shuyan Guan, Yiyong Ma
{"title":"The overexpression of <i>ascorbate peroxidase</i> 2 (<i>APX2</i>) gene improves drought tolerance in maize.","authors":"Bai Gao, Yiran Wang, Jing Qu, Ming Miao, Yang Zhao, Siyan Liu, Shuyan Guan, Yiyong Ma","doi":"10.1007/s11032-025-01548-2","DOIUrl":"10.1007/s11032-025-01548-2","url":null,"abstract":"<p><p>Maize, a primary global food crop, is crucial for food security. In recent years, climatic and other abiotic stresses have led to frequent global droughts. Ascorbate peroxidase (APX) plays a vital role in the ascorbate-glutathione cycle. Under drought stress, APX effectively scavenges reactive oxygen species (ROS) produced by plants and maintains the normal growth and development of organisms. This study successfully amplified APX-related genes, and the <i>ZmAPX2</i> gene was screened using expression analysis. pCAMBIA3301-ZmAPX2-Bar and pCXB053-ZmAPX2-Bar plant expression vectors were constructed and transformed into the maize inbred line H120. Drought tolerance of plants was analyzed by phenotypic characteristics, physiological and biochemical indices in T<sub>2</sub> generation positive maize seedlings as well as agronomic traits at maturity. Results indicate that boosting APX2 gene expression enhances maize drought resistance by reducing ROS content. This research underpins the exploration of new drought-tolerant maize germplasm and resistance mechanisms.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01548-2.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 2","pages":"27"},"PeriodicalIF":2.6,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829862/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143441527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Polymerization of beneficial plant height QTLs to develop superior lines which can achieving hybrid performance levels.","authors":"Congbin Kang, Lin Zhang, Yichen Hao, Mingfei Sun, Mengyao Li, Ziang Tian, Ling Dong, Xianjun Liu, Xing Zeng, Yanjie Sun, Shiliang Cao, Yajie Zhao, Chao Zhou, Xiang Yu Zhao, Xian Sheng Zhang, Thomas Lübberstedt, Xuerong Yang, Hongjun Liu","doi":"10.1007/s11032-025-01546-4","DOIUrl":"10.1007/s11032-025-01546-4","url":null,"abstract":"<p><p>Heterosis, a key technology in modern commercial maize breeding, is limited by the narrow genetic base which hinders breeders from developing superior hybrid varieties. By integrating big data and functional genomics technologies, it becomes possible to create new super maize inbred lines that resemble hybrid varieties through the aggregation of multiple QTL parental advantage loci. In this study, we utilized a combination of resequencing and field selfing selection methods to develop three pyramiding QTL lines (PQLs) (PQL4, 6, and 7), each containing 15, 12, and 12 QTL loci respectively. Among the three PQLs, PQL6 (266.78 cm/119.39 cm) demonstrated hybrid-like performance comparable to the hybrid (276.96 cm/127.02 cm) (<i>P</i> < 0.05). Testcross between PQL6 and the parental lines revealed that PQL6 had accumulated and fixed advanced parent alleles for superior traits in plant and ear height. The significant increase in PQL6 plant height primarily resulted from the aggregation of two major effective QTL (<i>qEH2-1</i> and <i>qEH8-1</i> on chromosomes 2 and 8), indicating that the aggregation of major effective QTL is a key selection indicator. Furthermore, PQL6 exhibited slow vegetative growth but experienced a rapid height increase during the reproductive stage, particularly in the 1-2 weeks before flowering, when its growth rate accelerated and surpassed that of the hybrid varieties. Our study explored the time period and key parameter indicators for molecular breeding of maize, providing a theoretical concept and practices for further complex multi-trait design and aggregation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01546-4.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 2","pages":"26"},"PeriodicalIF":2.6,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825963/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143433532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improvement of the outcrossing ability of CMS lines by pyramiding QTLs for SER.","authors":"Quanya Tan, Zhenpeng Gan, Lin Shao, Liang Xiong, Xin Luan, Weifeng Yang, Haitao Zhu, Suhong Bu, Guifu Liu, Zupei Liu, Shaokui Wang, Guiquan Zhang","doi":"10.1007/s11032-025-01545-5","DOIUrl":"10.1007/s11032-025-01545-5","url":null,"abstract":"<p><p>The stigma exsertion rate (SER) is a key factor in improving the outcrossing ability of cytoplasmic male sterility (CMS) lines in rice. In previous studies, we identified 18 SER-QTLs and developed some SER-QTL pyramiding lines (PLs). In this study, 4QL-1 and 4QL-2 were selected from these PLs and crossed with CMS maintainer lines H211B and H212B, respectively, to develop two new CMS maintainer lines, H221B and H222B, and their CMS lines H221A and H222A. The SER of H221B and H222B were 74.7% and 73.1%, respectively, reaching a high SER level. Compared with CMS maintainer lines, the CMS lines consistently exhibited higher SER, which may be related to the delayed flowering time of the CMS lines. Filed experiments showed that outcrossing seed-setting rates of H221A and H222A were significantly higher than those of the original CMS lines, which meets the requirements for hybrid rice seed production. These results confirm that SER is a key factor in enhancing rice outcrossing ability. Our findings demonstrate that pyramiding SER-QTLs is an effective strategy for improving rice SER and increasing outcrossing seed-setting rate.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01545-5.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 2","pages":"24"},"PeriodicalIF":2.6,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-02-06eCollection Date: 2025-02-01DOI: 10.1007/s11032-025-01543-7
Youngeun Lee, Seong-Gyu Jang, Byungjun Jin, Su-Min Jo, Ju-Won Kang, So-Myeong Lee, Jin-Kyung Cha, Hyunjin Park, Sais-Beul Lee, Woo-Jae Kim, Ji-Yoon Lee, Hyunggon Mang, Dongjin Shin, Jun-Hyeon Cho, Dong-Soo Park, Jong-Hee Lee, Youngho Kwon
{"title":"Integrating molecular markers and phenotypic analysis to assess cold tolerance in rice germplasm.","authors":"Youngeun Lee, Seong-Gyu Jang, Byungjun Jin, Su-Min Jo, Ju-Won Kang, So-Myeong Lee, Jin-Kyung Cha, Hyunjin Park, Sais-Beul Lee, Woo-Jae Kim, Ji-Yoon Lee, Hyunggon Mang, Dongjin Shin, Jun-Hyeon Cho, Dong-Soo Park, Jong-Hee Lee, Youngho Kwon","doi":"10.1007/s11032-025-01543-7","DOIUrl":"10.1007/s11032-025-01543-7","url":null,"abstract":"<p><p>Rice (<i>Oryza sativa</i> L.) is a crucial staple food for most of the world's population. However, it is highly vulnerable to low temperatures, which can induce growth retardation and yield loss. In this study, we aimed to develop SNP- and Indel-based molecular markers for the key cold tolerance-related genes <i>HAN1</i>, <i>COLD11</i>, and <i>COLD1</i>. The <i>HAN1</i> marker was designed using a KASP assay, which was effective for fluorescence-based detection, whereas <i>COLD11</i> and <i>COLD1</i> markers were gel electrophoresis-compatible, enabling easy application without complex equipment. Considering the polygenic nature of cold tolerance, we analyzed combined markers, which exhibited enhanced prediction accuracy compared to single-marker analysis. Based on these markers, we categorized 372 rice cultivars into seven genotypic groups and assessed their genotypic and phenotypic data. The cold-tolerant <i>HAN1</i> genotype was absent in the Tongil and <i>indica</i> cultivars but conferred the highest cold tolerance to <i>japonica</i> cultivars, highlighting the crucial role of <i>HAN1</i> in the cold stress response. The <i>COLD1</i> genotype and GCG repeat number of <i>COLD11</i> are crucial for cold tolerance. Analysis of a doubled haploid population derived from a cross between the '93-11' and 'Milyang352' confirmed that the number of <i>COLD11</i>'s GCG repeats significantly influence cold tolerance, followed by <i>COLD1</i>. Combining multiple cold-resistant alleles improved overall tolerance and post-stress recovery. Identifying additional alleles associated with cold stress resistance could aid in the selection of Tongil cultivars with enhanced cold tolerance. These markers could potentially contribute to breeding programs for the identification and selection of cold-tolerant rice varieties.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01543-7.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 2","pages":"23"},"PeriodicalIF":2.6,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel methods for genetic transformation of watermelon (<i>Citrullus lanatus</i>) without tissue culture via <i>Agrobacterium rhizogenes</i>.","authors":"Yige Gu, Yuanyuan Qin, Shengqi Hua, Jiale Shi, Congji Yang, Yuqi Peng, Lili Zhu, Wei Dong","doi":"10.1007/s11032-025-01544-6","DOIUrl":"10.1007/s11032-025-01544-6","url":null,"abstract":"<p><p>Factors that restrict the development of genetic transformation include the long cycle, extensive requirements for experimental conditions, and low survival and transformation rates. Especially for plants that obtain offspring through sexual reproduction. This study established the genetic transformation methods that are particularly suitable for it. First, a rapid <i>in vivo transformation</i> system of adventitious roots was developed using <i>A. rhizogenes</i> to infect normally growing watermelon stem nodes without requiring plant treatment, enabling the stable genetic transformation of adventitious roots. And the genetic transformation efficiency of adventitious roots reaches 100%. Second, the traditional genetic transformation system was improved using <i>A. rhizogenes</i> which induces rooting of explants and promotes the regeneration of adventitious buds. The genetic transformation efficiency of adventitious roots reaches 100% and adventitious buds reaches 40%, which is much higher than using <i>A. tumefaciens.</i> Third, in order to achieve shorten the regeneration cycle and high transformation efficiency, the genetic transformation method without tissue culture was established using <i>A. rhizogenes</i> to infect the seed. This genetic transformation efficiency of transgenic plants reaches 80%, and it is not limited by genotype. This study significantly improves the plant regeneration and low genetic transformation efficiency while promoting the rapid development of watermelon molecular breeding.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01544-6.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 2","pages":"22"},"PeriodicalIF":2.6,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143382787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-02-04eCollection Date: 2025-02-01DOI: 10.1007/s11032-025-01542-8
Tiankang Wang, Yuefeng Fu, Shufeng Song, Yixing Li, Hanshu Yang, Lianyang Bai, Li Li
{"title":"Xizi 3: a new rice variety with stable low-cadmium-accumulation characteristics.","authors":"Tiankang Wang, Yuefeng Fu, Shufeng Song, Yixing Li, Hanshu Yang, Lianyang Bai, Li Li","doi":"10.1007/s11032-025-01542-8","DOIUrl":"10.1007/s11032-025-01542-8","url":null,"abstract":"<p><p>This study is the first to develop a method for cadmium enrichment and identification in sterile rice lines. The important low-cadmium rice resources Luohong 3A and Luohong 4A were discovered. A precise breeding system for low cadmium enrichment in rice was established, leading to the cultivation of Xizi 3, the first low-cadmium rice variety approved by the State. This achievement is significant for solving the problem of excessive cadmium in rice in southern China. In 2024, Xizi 3 was selected as a major agricultural technology by the Ministry of Agriculture and Rural Affairs and a key scientific and technological achievement in China's agricultural and rural areas.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 2","pages":"21"},"PeriodicalIF":2.6,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-01-22eCollection Date: 2025-02-01DOI: 10.1007/s11032-024-01532-2
Na Zhang, Mingzhao Zhu, Yuting Qiu, Zhiyuan Fang, Mu Zhuang, Yangyong Zhang, Honghao Lv, Jialei Ji, Xilin Hou, Limei Yang, Yong Wang
{"title":"Rapid introgression of the clubroot resistance gene <i>CRa</i> into cabbage skeleton inbred lines through marker assisted selection.","authors":"Na Zhang, Mingzhao Zhu, Yuting Qiu, Zhiyuan Fang, Mu Zhuang, Yangyong Zhang, Honghao Lv, Jialei Ji, Xilin Hou, Limei Yang, Yong Wang","doi":"10.1007/s11032-024-01532-2","DOIUrl":"10.1007/s11032-024-01532-2","url":null,"abstract":"<p><p>Clubroot, caused by <i>Plasmodiophora brassicae</i>, is a globally pervasive soil-borne disease that poses a significant challenge primarily in cruciferous crops. However, the scarcity of resistant materials and the intricate genetic mechanisms within cabbage present major obstacles to clubroot resistance (CR) breeding. In our previous research, we developed an Ogura CMS cabbage variety, \"17CR3\", which harbors the <i>CRa</i> gene, crucial for CR. The fertility of this variety can be restored through crossing with an Ogura cytoplasmic male sterile (CMS) restore line. In the current investigation, offspring from fertile hybrids were utilized as donor parents in backcrossing with five cabbage inbred lines, with the goal of introducing the <i>CRa</i> gene into elite cabbage cultivars possessing superior agronomic traits. Following five years of continuous field selection combined with molecular marker-assisted selection (MAS), we successfully developed BC<sub>4</sub> individuals exhibiting excellent agronomic traits and diverse genetic backgrounds. Whole-genome resequencing revealed a mere 54,213 SNP differences between the genetic makeup of BC<sub>4</sub> individuals and their recurrent parents. The results of inoculation identification demonstrated a high degree of co-segregation between the <i>CRa</i>-specific marker KBrH129J18 and resistance to <i>Plasmodiophora brassicae</i> in both inoculated resistant seedlings and cabbage plants harboring <i>CRa</i> across three distinct regions of China. Additionally, results from Semi-Quantitative RT-PCR experiments revealed minimal to no expression of <i>CRa</i> in the majority of susceptible individuals, underscoring the pivotal role of <i>CRa</i> in conferring CR. Moreover, BC<sub>3</sub> individuals resulting from the cross between \"SK308\" and \"18CR3\", which carried <i>CRa</i>, exhibited resistance to clubroot under the natural conditions of disease-prone fields in Wulong, China. In summary, through a combination of traditional breeding methods and MAS, we successfully bred five cabbage inbred lines carrying the <i>CRa</i> gene from diverse genetic backgrounds, thereby establishing a robust foundation for their integration into breeding programs.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01532-2.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 2","pages":"19"},"PeriodicalIF":2.6,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754771/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Molecular BreedingPub Date : 2025-01-21eCollection Date: 2025-02-01DOI: 10.1007/s11032-025-01538-4
Mahak Naveed, Mariyah Aslam, Syed Riaz Ahmed, Daniel K Y Tan, Francesco De Mastro, Muhammad Sayyam Tariq, Ammara Sakhawat, Muhammad Azeem Asad, Yongming Liu
{"title":"An overview of heat stress in Chickpea (<i>Cicer arietinum</i> L.): effects, mechanisms and diverse molecular breeding approaches for enhancing resilience and productivity.","authors":"Mahak Naveed, Mariyah Aslam, Syed Riaz Ahmed, Daniel K Y Tan, Francesco De Mastro, Muhammad Sayyam Tariq, Ammara Sakhawat, Muhammad Azeem Asad, Yongming Liu","doi":"10.1007/s11032-025-01538-4","DOIUrl":"10.1007/s11032-025-01538-4","url":null,"abstract":"<p><p>Chickpea (<i>Cicer arietinum</i>. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production. This legume is sensitive to heat stress at its reproductive stage leading to reduced flowering, flower abortion, and lack of pod formation, therefore emerging as a major limiting factor for yield. Chickpea, predominantly cultivated in semi-arid regions, is frequently subjected to high-temperature stress, which adversely affects its growth and yield. Given the escalating impacts of climate change, the development of heat-tolerant chickpea genotypes is imperative and can be achieved through the integration of advanced biotechnological approaches. The appropriate solution devised by some researchers is the modification of genetic architecture by targeting specific genes associated with tolerance to heat stress and harnessing them in the development of more robust chickpea varieties. Besides this, multi-omics strategies (Genomics, Transcriptomics, Proteomics, and Metabolomics) have made it easier to reveal the distinct genes / quantitative trait loci (QTLs) / markers, proteins, and metabolites correlated with heat tolerance. This review compiles noteworthy revelations and different tactics to boost chickpea tolerance under heat temperatures.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01538-4.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 2","pages":"18"},"PeriodicalIF":2.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751345/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}