Łukasz Zinkiewicz, Milena Królikowska, Filip Bojdecki, Alexander Krupiński-Ptaszek, Przemysław Słota, Piotr Wasylczyk
{"title":"Versatile, open-access opto-mechanics design for optical microscopes prototyping.","authors":"Łukasz Zinkiewicz, Milena Królikowska, Filip Bojdecki, Alexander Krupiński-Ptaszek, Przemysław Słota, Piotr Wasylczyk","doi":"10.1002/jemt.24680","DOIUrl":"https://doi.org/10.1002/jemt.24680","url":null,"abstract":"<p><p>Prototype optical microscopes, built to pursue developments in advanced imaging techniques, need specific opto-mechanical constructions: preferably with high flexibility in the elements' arrangement, easy access to the optical paths, straightforward integration with external optical subsystems-light sources and detectors-as well as good mechanical stability. Typically they are either built around an adapted commercial microscope body or as a home-brewed setups, based on standard opto-mechanical elements, and neither solution delivers the desired characteristics. We developed a series of versatile microscope design for prototype optical microscopes in various configurations that use folding mirror(s) to maintain the optical paths horizontal throughout most of the setup. All prototypes use many standard opto-mechanics in the excitation and detection paths, which simplifies the construction and maintenance of the microscopes. The proposed opto-mechanical arrangement proved to be useful in building an upright as well as inverted microscopes, in particular Raman microscopes in various configurations. Horizontal arrangement simplified greatly the optical alignment and enabled for fast modifications in the setup-both key advantages at the prototyping stage. Last but not least, the laser safety of the optical system increased. The versatile microscope platform, based around the idea of the horizontal beam arrangement, can easily be adopted to many microscope configurations and to a variety of components that potential users might want to incorporate into them. RESEARCH HIGHLIGHTS: We design, fabricate, and test a compact, versatile opto-mechanics for prototyping optical microscopes in various configurations. Horizontal layout along most of the optical paths provides excellent access to the light beams, allows for using standard components and increases the laser safety.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vera Rakonjac, Dragan Nikolić, Slavica Čolić, Ivana Glišić, Milena Đorđević, Melpomena Popovska, Sanja Radičević
{"title":"Investigation of pollen morphology and viability of sweet and sour cherry genotypes by multivariate analysis.","authors":"Vera Rakonjac, Dragan Nikolić, Slavica Čolić, Ivana Glišić, Milena Đorđević, Melpomena Popovska, Sanja Radičević","doi":"10.1002/jemt.24674","DOIUrl":"https://doi.org/10.1002/jemt.24674","url":null,"abstract":"<p><p>The aim of this study was to examine the dimensions and surface morphology of pollen grains of some sweet and sour cherry genotypes through scanning electron microscopy (SEM) as an additional alternative identification tool. In vitro pollen germination and pollen tube length as indicators of their viability were determined as well. Observations were carried on 10 sweet cherry (Prunus avium L.) and 7 sour cherry (Prunus cerasus L.) genotypes. All genotypes had prolate, tricolpate pollen grains, and striate exine ornamentation, with more parallel longitudinal ridges. Significant differences among genotypes within species and between species were found for most pollen grain characteristics and exine ornamentation. In both sweet and sour cherry the largest variability was recorded for colpus length (CV = 15.0% and 12.9%, respectively). For sweet cherry genotypes, in vitro pollen germination and pollen tube length ranged between 1.4% to 51.5% and 360.4 to 669.3 μm respectively, while for sour cherries they ranged from 15.5% to 37.0% and 96.3 to 960.2 μm, respectively. The results of the correlation analysis showed that in vitro pollen germination correlated positively with pollen length/pollen width (L/W) ratio (r = .640) and furrow width (r = .588), and negatively with the number of ridges (r = -.517), while pollen tube length was not significantly correlated with any of the studied characteristics. Principal component analysis (PCA) revealed that pollen length, pollen width, L/W ratio, colpus length, mesocolpium width, and ridge width are relevant tools to discriminate among the studied genotypes. The measurements made on pollen grains did not reveal individually big differences, but when all features were considered together, the pollen of each genotype exhibited a unique pattern. The distribution on the scatter plot showed considerable variation among sweet and sour cherry genotypes based on pollen morphological characteristics, which led to their distribution into two separate groups. This demonstrates the ability to distinguish cherry species based on pollen morphological characteristics determined by SEM. To improve discriminative ability for genotypes within species combination between pollen ultrastructural analysis, morphological and molecular markers is desirable, in subsequent work. RESEARCH HIGHLIGHTS: Significant differences in pollen characteristics between sweet and sour cherry. Significance of pollen morphology in taxonomic differentiation. Significance of SEM studies for the taxonomic identification.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amjad Rehman, Ibrahim Abunadi, Faten S Alamri, Haider Ali, Saeed Ali Bahaj, Tanzila Saba
{"title":"An intelligent deep augmented model for detection of banana leaves diseases.","authors":"Amjad Rehman, Ibrahim Abunadi, Faten S Alamri, Haider Ali, Saeed Ali Bahaj, Tanzila Saba","doi":"10.1002/jemt.24681","DOIUrl":"https://doi.org/10.1002/jemt.24681","url":null,"abstract":"<p><p>One of the most popular fruits worldwide is the banana. Accurate identification and categorization of banana diseases is essential for maintaining global fruits security and stakeholder profitability. Four different types of banana leaves exist Healthy, Cordana, Sigatoka, and Pestalotiopsis. These types can be analyzed using four types of vision: RGB, night vision, infrared vision, and thermal vision. This paper presents an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. Each vision consisted of 1600 images with a size of (224 × 224). The training-testing approach was used to evaluate the performance of the hybrid model on Kaggle dataset, which was justified by various methods and metrics. The proposed model achieved a remarkable mean accuracy rate of 99.16% for RGB vision, 98.02% for night vision, 96.05% for infrared vision, and 96.10% for thermal vision for training and testing data. Microscopy employed in this research as a validation tool. The microscopic examination of leaves confirmed the presence and extent of the disease, providing ground truth data to validate and refine the proposed model. RESEARCH HIGHLIGHTS: The model can be helpful for internet of things -based drones to identify the large scale of banana leaf-disease detection using drones for images acquisition. Proposed an intelligent deep augmented learning model composed of VGG19 and passive aggressive classifier (PAC) to classify the four diseases types of bananas under each type of vision. The model detected banana leaf disease with a 99.16% accuracy rate for RGB vision, 98.02% accuracy rate for night vision, 96.05% accuracy rate for infrared vision, and 96.10% accuracy rate for thermal vision The model will provide a facility for early disease detection which minimizes crop loss, enhances crop quality, timely decision making, cost saving, risk mitigation, technology adoption, and helps in increasing the yield.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yasin Özkabadayı, Mustafa Türk, Ali Kumandaş, Siyami Karahan
{"title":"Amino acid surface modified bioglass: A candidate biomaterial for bone tissue engineering<sup>1</sup>.","authors":"Yasin Özkabadayı, Mustafa Türk, Ali Kumandaş, Siyami Karahan","doi":"10.1002/jemt.24659","DOIUrl":"https://doi.org/10.1002/jemt.24659","url":null,"abstract":"<p><p>Bioglasses are solid materials consisted of sodium oxide, calcium oxide, silicon dioxide and phosphorus in various proportions and have used in bone tissue engineering. There have been ongoing efforts to improve the surface properties of bioglasses to increase biocompatibility and performance. The aim of the present study is to modify the bioglass surface with an amino acid mixture consisting of arginine, aspartic acid, phenylalanine, cysteine, histidine and lysine, to characterize the surface, and to evaluate the performance and biocompatibility in vitro and in vivo. The untreated bioglass, bioglass kept in simulated body fluid (SBF), and modified bioglass were used in further evaluation. After confirmation of the surface modification with FT-IR analyses and SEM analyses, MC3T3-E1 preosteoblasts adhesion on the surface was also revealed by SEM. The modified bioglass had significantly higher ALP activity in colorimetric measurement, rate of calcium accumulations in Alizarin red s staining, lower rate of cell death in Annexin-V/PI staining to determine apoptosis and necrosis. Having higher cell viability rate in MTT test and absence of genotoxicity in micronucleus test (OECD 487), the modified bioglass was further confirmed for biocompatibility in vitro. The results of the rat tibial defect model revealed that the all bioglass treatments had a significantly better bone healing score compared to the untreated negative control. However, the modified bioglass exhibited significantly better bone healing efforts especially during the first and the second months compared to the other bioglass treatment treatments. As a result, the amino acid surface modification of bioglasses improves the surface biocompatibility and osteogenic performance that makes the amino acid modified bioglass a better candidate for bone tissue engineering. RESEARCH HIGHLIGHTS: Bioglass surface modification with amino acids contributes to bioglass-tissue interaction with an improved cell attachment. Modified bioglass increases in vitro Alp activity and calcium accumulation, and also positively affects cell behavior by supporting cell adaptation. Bioglass exerts osteogenic potential in vivo especially during early bone healing.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zecca Piero Antonio, Protasoni Marina, Reguzzoni Marcella, Raspanti Mario
{"title":"DIY adapting SEM for low-voltage TEM imaging.","authors":"Zecca Piero Antonio, Protasoni Marina, Reguzzoni Marcella, Raspanti Mario","doi":"10.1002/jemt.24679","DOIUrl":"https://doi.org/10.1002/jemt.24679","url":null,"abstract":"<p><p>Electron microscopy is essential for examining materials and biological samples at microscopic levels, providing detailed insights. Achieving high-quality imaging is often challenged by the potential damage high-energy beams can cause to sensitive samples. This study compares scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to evaluate image quality, noise levels, and the ability to preserve delicate specimens. We used a modified SEM system with a transmitted electrons conversion accessory, allowing it to operate like a TEM but at lower voltages, thereby reducing sample damage. Our analysis included quantitative assessments of noise levels and texture characteristics such as entropy, contrast, dissimilarity, homogeneity, energy, and correlation. This comprehensive evaluation directly compared traditional TEM and the adapted SEM system across various images. The results showed that TEM provided images with higher clarity and significantly lower noise levels, reinforcing its status as the preferred method for detailed studies. However, the modified SEM system also produced high-quality images at very low acceleration voltages, which is crucial for imaging samples sensitive to high-energy exposure. The texture metrics analysis highlighted the strengths and limitations of each method, with TEM images exhibiting lower entropy and higher homogeneity, indicating smoother and more uniform textures. This study emphasizes the importance of selecting the appropriate electron microscopy method based on research needs, such as sample sensitivity and required detail level. With its conversion accessory, the modified SEM system is a versatile and valuable tool, offering a practical alternative to TEM for various applications. This research enhances our understanding of the capabilities and limitations of SEM and TEM. It paves the way for further innovations in electron microscopy techniques, improving their applicability for studying sensitive materials. RESEARCH HIGHLIGHTS: Our study introduces a modified SEM adapter enabling TEM-like imaging at reduced voltages, effectively minimizing sample damage without compromising image resolution. Through comparative analysis, we found that images from the modified SEM closely match the quality of traditional TEM, showcasing significantly lower noise levels. This advancement underscores the SEM's enhanced capability for detailed structural analysis of sensitive materials, broadening its utility across materials science and biology.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hafsa Shahzad, Shaukat Ali, Muhammad Adeel Farooq, Muhammad Summer, Ali Hassan, Rida Sulayman, Lubna Kanwal, Uzma Azeem Awan
{"title":"UV-spectrophotometric and spectroscopic observed Vachellia nilotica and Nigella sativa formulations regularized the histopathological and biochemical parameters during wound contraction.","authors":"Hafsa Shahzad, Shaukat Ali, Muhammad Adeel Farooq, Muhammad Summer, Ali Hassan, Rida Sulayman, Lubna Kanwal, Uzma Azeem Awan","doi":"10.1002/jemt.24673","DOIUrl":"https://doi.org/10.1002/jemt.24673","url":null,"abstract":"<p><p>Diabetes mellitus causes impaired diabetic wounds which is linked to a number of pathological alterations that impede the healing of wounds. In the current research, Swiss albino mice were given alloxan monohydrate to induce diabetes and excision wounds of approximately 6 mm using biopsy punch. The diabetic wounds were treated with various biomaterials including Vachellia nilotica extract (VN), Nigella sativa extract (NS), V. nilotica nanoparticles (VNNPs) and N. sativa nanoparticles (NSNPs). Their effects were determined by evaluating the percent wound contraction, healing time, and histopathological analysis. The serum level of various biochemical parameters that is, pro-inflammatory cytokines, Matrix metalloproteinases (MMPs) and tissue inhibitor matrix metalloproteinases (TIMPs) were also determined. VNNPs group provided the best outcomes, with wound contraction 100% on 12<sup>th</sup> day. According to histopathological examination, VNNPs group reduced inflammation and encouraged the formation of blood vessels, fibroblasts, and keratinocytes. VNNPs group significantly alleviated the serum level of pro-inflammatory cytokines that are, TNF-α (19.4 ± 1.5 pg/mL), IL-6 (13.8 ± 0.6 pg/mL), and IL-8 (24.8 ± 1.2 pg/mL) as compared with the diabetic mice. The serum level of MMP2 (248.2 ± 7.9 pg/mL), MMP7 (316 ± 5.2 pg/mL), and MMP9 (167.8 ± 12.1 pg/mL) in the same group VNNPs were also observed much less than the diabetic mice. The serum level of TIMPs (176.8 ± 2.9 pg/mL) in the VNNPs group was increased maximally with respect to diabetic mice. It is concluded that nanoparticles and biomaterials possess healing properties and have the ability to repair the chronic/diabetic wound. RESEARCH HIGHLIGHTS: UV-spectrophotometric and Fourier transform infrared spectroscopy observation for functional group analysis and possible linkage between conjugates Optimization of the histopathological and biochemical markers after application of the formulations Microscopic analysis of epithelial tissues for evaluation of healing mechanisms Speedy contraction of wounds as the alleviation of the inflammatory and necrotic factors.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrastructure and distribution of antennal sensilla of parasitic wasp, Cotesia gregalis (Hymenoptera: Braconidae)","authors":"Le Liu, Ke Wei, Zhe Ren, Xiaoyi Wang","doi":"10.1002/jemt.24666","DOIUrl":"https://doi.org/10.1002/jemt.24666","url":null,"abstract":"<jats:label/><jats:italic>Cotesia gregalis</jats:italic> Yang et Wei (Hymenoptera: Braconidae) is a gregarious koinobiont endoparasitic wasp attacking the larvae of fall webworm, <jats:italic>Hyphantria cunea</jats:italic>, an important invasive insect pest in China. To better understand the parasitic wasps' mating and parasitic behaviors, we examined the morphology of the antennae of adult <jats:italic>C. gregalis</jats:italic>, as well as the type, number, and distribution of antennal sensilla, via scanning electron microscopy. The antennae of female and male <jats:italic>C. gregalis</jats:italic> are filiform and comprise a scape, pedicel, and 16 flagellomeres. The female antennae are significantly shorter than those of male. A total of nine morphological types of antennal sensilla (mechanoreceptor and chemoreceptor) are presented in both sexes, including four mechanoreceptors (sensilla chaetica [two subtypes], sensilla trichodea and Böhm bristles); five chemoreceptors (sensilla basiconica [two subtypes], sensilla placodea, sensilla styloconica, and sensilla coelocapitula). There is no difference in the type and distribution of antennal sensilla between males and females, but the number and length of some antennal sensilla show sexual dimorphism. The functional morphology of the sensilla of <jats:italic>C. gregalis</jats:italic> is discussed by comparison with other parasitic wasps. These findings provide foundation for further research on the chemical communication and host localization mechanisms of <jats:italic>C</jats:italic>. <jats:italic>gregalis</jats:italic>.Research Highlights<jats:list list-type=\"bullet\"> <jats:list-item>The first report of morphology and distribution pattern of the antennal sensilla in <jats:italic>C. gregalis</jats:italic> is discussed.</jats:list-item> <jats:list-item>A total of seven main types and nine antennal sensilla subtypes are observed in male and female <jats:italic>C. gregalis</jats:italic>.</jats:list-item> <jats:list-item>The type and distribution of antennal sensilla in males and females are identical; however, the number and length of certain antennal sensilla show sexual dimorphism.</jats:list-item> </jats:list>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of four nickel titanium endodontic instruments, with cyclic fatigue resistance, scanning electron microscopy, and energy dispersive x-ray spectroscopy","authors":"İhsan Furkan Ertuğrul, Havva Kübra Arslan","doi":"10.1002/jemt.24655","DOIUrl":"10.1002/jemt.24655","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>The aim of this study was to compare of four different nickel-titanium (Ni-Ti) endodontic files and evaluate in terms of cyclic fatigue resistance and metallurgical properties. Four different type Ni-Ti root canal files Protaper Next X2 (PTN) (Dentsply Maillefer, Ballaigues, Switzerland), One Curve (OC) #25.06 (Micro Mega, Besancon, France), EndoPlus Flex Plus Gold X2 (EPG) (Turkuaz Dental, Denizli, Turkey), and EndoPlus Flex Plus Blue #25.06 (EPB) (Turkuaz Dental, Denizli, Turkey) files were tested for cyclic fatigue resistance (<i>n</i> = 20). During experiments artificial zirconia block canal was used. The artificial canal designed with curvature 60° and 5-mm radius. The number of cyclic to fracture (NCF) was noted. Fractured length (FL) parts of Ni-Ti files were recorded to assessment of fracture volumetric point. All fractured surfaces of Ni-Ti files were assessed by scanning electron microscope (SEM) to confirm the type of fractures. Descriptive evaluation become accomplished for the fundamental composition of units with the aid of using energy-dispersive x-ray spectroscopy (EDX). NCF data were evaluated via Bonferroni test with post hoc multiple comparison method. OC showed the highest NCF values (<i>p</i> < .05). The standardization of the study was confirmed as the FL of files was statistically similar in length (<i>p</i> > .05). SEM analysis confirmed that all scanned samples were fractured due to cyclic fatigue. EDX analysis confirmed that EPB established the poorest Ni content file.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Research Highlights</h3>\u0000 \u0000 <div>\u0000 <ul>\u0000 \u0000 <li>The cyclic fatigue-related failure of One Curve was significantly more resistant than Protaper Next and EndoPlus files.</li>\u0000 \u0000 <li>Scanning electron microscopy images showed that One Curve and Protaper Next have round tips</li>\u0000 \u0000 <li>Energy dispersive x-ray spectroscopy showed that all four endodontic instruments mainly have Nickel and Titanium elements</li>\u0000 </ul>\u0000 </div>\u0000 </section>\u0000 </div>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jemt.24655","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pietro Arnaldi, Elena Casarotto, Michela Relucenti, Grazia Bellese, Maria Cristina Gagliani, Valeria Crippa, Patrizio Castagnola, Katia Cortese
{"title":"A NSC-34 cell line-derived spheroid model: Potential and challenges for in vitro evaluation of neurodegeneration","authors":"Pietro Arnaldi, Elena Casarotto, Michela Relucenti, Grazia Bellese, Maria Cristina Gagliani, Valeria Crippa, Patrizio Castagnola, Katia Cortese","doi":"10.1002/jemt.24651","DOIUrl":"10.1002/jemt.24651","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Three-dimensional (3D) spheroid models aim to bridge the gap between traditional two-dimensional (2D) cultures and the complex in vivo tissue environment. These models, created by self-clustering cells to mimic a 3D environment with surrounding extracellular framework, provide a valuable research tool. The NSC-34 cell line, generated by fusing mouse spinal cord motor neurons and neuroblastoma cells, is essential for studying neurodegenerative diseases like amyotrophic lateral sclerosis (ALS), where abnormal protein accumulation, such as TAR-DNA-binding protein 43 (TDP-43), occurs in affected nerve cells. However, NSC-34 behavior in a 3D context remains underexplored, and this study represents the first attempt to create a 3D model to determine its suitability for studying pathology. We generated NSC-34 spheroids using a nonadhesive hydrogel-based template and characterized them for 6 days. Light microscopy revealed that NSC-34 cells in 3D maintained high viability, a distinct round shape, and forming stable membrane connections. Scanning electron microscopy identified multiple tunnel-like structures, while ultrastructural analysis highlighted nuclear bending and mitochondria alterations. Using inducible GFP-TDP-43-expressing NSC-34 spheroids, we explored whether 3D structure affected TDP-43 expression, localization, and aggregation. Spheroids displayed nuclear GFP-TDP-43 expression, albeit at a reduced level compared with 2D cultures and generated both TDP-35 fragments and TDP-43 aggregates. This study sheds light on the distinctive behavior of NSC-34 in 3D culture, suggesting caution in the use of the 3D model for ALS or TDP-43 pathologies. Yet, it underscores the spheroids' potential for investigating fundamental cellular mechanisms, cell adaptation in a 3D context, future bioreactor applications, and drug penetration studies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Research Highlights</h3>\u0000 \u0000 <div>\u0000 <ul>\u0000 \u0000 <li>3D spheroid generation: NSC-34 spheroids, developed using a hydrogel-based template, showed high viability and distinct shapes for 6 days.</li>\u0000 \u0000 <li>Structural features: advanced microscopy identified tunnel-like structures and nuclear and mitochondrial changes in the spheroids.</li>\u0000 \u0000 <li>Protein dynamics: the study observed how 3D structures impact TDP-43 behavior, with altered expression but similar aggregation patterns to 2D cultures.</li>\u0000 \u0000 <li>Research implications: this study reveals the unique behavior of NSC-34 in 3D culture, suggests a careful approach to use this model for ALS or TDP-43 pathologies, and highlights its potential in cellular mechanism research and drug testing applications.</li>\u0000 </ul>\u0000 </div>\u0000","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Differential phagocytic expression of IC-21 macrophages and their scavenging receptors during inflammatory induction by oxysterol: A microscopic approach","authors":"Parimalanandhini Duraisamy, Sangeetha Ravi, Livya Catherene Martin, Manikandan Kumaresan, Beulaja Manikandan, Manikandan Ramar","doi":"10.1002/jemt.24647","DOIUrl":"10.1002/jemt.24647","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>Phagocytosis by macrophages dates back to a long history in science, this present study deals with new approaches that have been analyzed and standardized towards the interesting aspects of primary and secondary macrophages. The distinct morphological differences in primary and secondary phagocytic cells were observed and the phagocytic response of secondary macrophages under the influence of 7-ketocholesterol and lipopolysaccharide was analyzed. The primary peritoneal and secondary IC-21 cells unveiled explicit differences in nuclear numbers shapes and sizes of the granules present within the cytoplasmic region. Further, potent inducers 7KCh and LPS influenced an effective activation of IC-21 macrophages and resulted in ROS generation, irregulated protein expressions of CD86, CD68, and CD206 with enhanced phagocytic responses towards goat, cow, and human RBC targets with significant phagocytic rate and index were observed. Moreover, a remarkable observation of target specificity and aggregations with IC-21 phagocytic macrophages revealed the notion that specific membrane receptors and secretory molecules (lysosomes) are primarily involved in their phagocytic mechanism.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Research Highlights</h3>\u0000 \u0000 <div>\u0000 <ol>\u0000 \u0000 <li>IC-21 macrophages are peritoneal origin from mice but the primary peritoneal macrophages and cell line show distinct differences.</li>\u0000 \u0000 <li>IC-21 macrophages express target-specific phagocytosis.</li>\u0000 \u0000 <li>Phagocytosis in IC-21 macrophages is regulated by CD markers (68, 86, and 206).</li>\u0000 </ol>\u0000 </div>\u0000 </section>\u0000 </div>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":null,"pages":null},"PeriodicalIF":2.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}