Enhanced Photocatalytic Degradation of Bisphenol A by a Novel MOF/CuFe2O4 Composite in Wastewater Treatment.

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY
Khalid Javed, Muhammad Bilal, Naseem Abbas, Sajid Mahmood, Tanzeela Fazal, Shahid Iqbal, Khalid M Alotaibi
{"title":"Enhanced Photocatalytic Degradation of Bisphenol A by a Novel MOF/CuFe<sub>2</sub>O<sub>4</sub> Composite in Wastewater Treatment.","authors":"Khalid Javed, Muhammad Bilal, Naseem Abbas, Sajid Mahmood, Tanzeela Fazal, Shahid Iqbal, Khalid M Alotaibi","doi":"10.1002/jemt.24813","DOIUrl":null,"url":null,"abstract":"<p><p>The synergistic effects of a CuFe₂O₄ and cobalt/nickel metal organic framework (Co/Ni-MOF) based composite (MOF/CuFe₂O₄) were explored for photodegradation of Bisphenol A (BPA), various MOF/CuFe₂O₄ composites were synthesized via a hydrothermal method, By adjusting CuFe₂O₄ to Co/Ni-MOF mass ratios of 2:1, 1:1, and 1:2 and were denoted as MOF/CuFe₂O₄ (2:1), MOF/CuFe₂O₄ (1:1), and MOF/CuFe₂O₄ (1:2), respectively. The composite MOF/CuFe₂O₄ (1:1) with a band gap energy (Eg) of 2.28 eV exhibited excellent photocatalytic activity achieving 98% degradation of a 10 ppm BPA solution under visible light (50 W) irradiation within 75 min, at pH 3, 25°C. This process achieved a quantum yield (QY) of 9.10 × 10<sup>-6</sup> molecules photon<sup>-1</sup> and a space-time yield (SY) of 9.10 × 10<sup>-7</sup>, highlighting the composite's efficiency and potential for practical applications. Visible-light absorption efficiency improved as photon energy increased (25 to 50 W) and facilitated the generation of <math> <semantics><mrow><mo>˙</mo> <msubsup><mi>O</mi> <mn>2</mn> <mo>-</mo></msubsup> </mrow> <annotation>$$ \\dot{\\mkern6mu}{\\mathrm{O}}_2^{-} $$</annotation></semantics> </math> radicals. Kinetic studies indicated a first-order reaction rate (R<sup>2</sup> = 0.964) for BPA photodegradation by MOF/CuFe₂O₄ (1:1) composite. Additionally, the MOF/CuFe₂O₄ composite demonstrated superior antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) under light compared with dark environment. Remarkably, the composite maintained its photocatalytic efficiency over at least six cycles. The results of the current study highlight the effectiveness and reusability of the MOF/CuFe₂O₄ (1:1) composite as a nanomaterial for the photodegradation of BPA and its potential applications in water treatment.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24813","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The synergistic effects of a CuFe₂O₄ and cobalt/nickel metal organic framework (Co/Ni-MOF) based composite (MOF/CuFe₂O₄) were explored for photodegradation of Bisphenol A (BPA), various MOF/CuFe₂O₄ composites were synthesized via a hydrothermal method, By adjusting CuFe₂O₄ to Co/Ni-MOF mass ratios of 2:1, 1:1, and 1:2 and were denoted as MOF/CuFe₂O₄ (2:1), MOF/CuFe₂O₄ (1:1), and MOF/CuFe₂O₄ (1:2), respectively. The composite MOF/CuFe₂O₄ (1:1) with a band gap energy (Eg) of 2.28 eV exhibited excellent photocatalytic activity achieving 98% degradation of a 10 ppm BPA solution under visible light (50 W) irradiation within 75 min, at pH 3, 25°C. This process achieved a quantum yield (QY) of 9.10 × 10-6 molecules photon-1 and a space-time yield (SY) of 9.10 × 10-7, highlighting the composite's efficiency and potential for practical applications. Visible-light absorption efficiency improved as photon energy increased (25 to 50 W) and facilitated the generation of ˙ O 2 - $$ \dot{\mkern6mu}{\mathrm{O}}_2^{-} $$ radicals. Kinetic studies indicated a first-order reaction rate (R2 = 0.964) for BPA photodegradation by MOF/CuFe₂O₄ (1:1) composite. Additionally, the MOF/CuFe₂O₄ composite demonstrated superior antimicrobial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) under light compared with dark environment. Remarkably, the composite maintained its photocatalytic efficiency over at least six cycles. The results of the current study highlight the effectiveness and reusability of the MOF/CuFe₂O₄ (1:1) composite as a nanomaterial for the photodegradation of BPA and its potential applications in water treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信