Microsystems & Nanoengineering最新文献

筛选
英文 中文
Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. 细菌纳米技术作为癌症靶向给药和免疫疗法的典范。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-20 DOI: 10.1038/s41378-024-00743-z
Ahmad Gholami, Milad Mohkam, Saeede Soleimanian, Mohammad Sadraeian, Antonio Lauto
{"title":"Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy.","authors":"Ahmad Gholami, Milad Mohkam, Saeede Soleimanian, Mohammad Sadraeian, Antonio Lauto","doi":"10.1038/s41378-024-00743-z","DOIUrl":"https://doi.org/10.1038/s41378-024-00743-z","url":null,"abstract":"<p><p>Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"113"},"PeriodicalIF":7.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. 细菌纳米技术作为癌症靶向给药和免疫疗法的典范。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00743-z
Ahmad Gholami, Milad Mohkam, Saeede Soleimanian, Mohammad Sadraeian, Antonio Lauto
{"title":"Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy.","authors":"Ahmad Gholami, Milad Mohkam, Saeede Soleimanian, Mohammad Sadraeian, Antonio Lauto","doi":"10.1038/s41378-024-00743-z","DOIUrl":"10.1038/s41378-024-00743-z","url":null,"abstract":"<p><p>Cancer, a multifaceted and diverse ailment, presents formidable obstacles to traditional treatment modalities. Nanotechnology presents novel prospects for surmounting these challenges through its capacity to facilitate meticulous and regulated administration of therapeutic agents to malignant cells while concurrently modulating the immune system to combat neoplasms. Bacteria and their derivatives have emerged as highly versatile and multifunctional platforms for cancer nanotherapy within the realm of nanomaterials. This comprehensive review delves into the multifaceted and groundbreaking implementations of bacterial nanotechnology within cancer therapy. This review encompasses four primary facets: the utilization of bacteria as living conveyors of medicinal substances, the employment of bacterial components as agents that stimulate the immune system, the deployment of bacterial vectors as tools for delivering genetic material, and the development of bacteria-derived nano-drugs as intelligent nano-medications. Furthermore, we elucidate the merits and modalities of operation pertaining to these bacterial nano-systems, along with their capacity to synergize with other cutting-edge nanotechnologies, such as CRISPR-Cas systems. Additionally, we offer insightful viewpoints regarding the forthcoming trajectories and prospects within this expanding domain. It is our deduction that bacterial nanotechnology embodies a propitious and innovative paradigm in the realm of cancer therapy, which has the potential to provide numerous advantages and synergistic effects in enhancing the outcomes and quality of life for individuals afflicted with cancer.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"113"},"PeriodicalIF":7.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A wearable, rapidly manufacturable, stability-enhancing microneedle patch for closed-loop diabetes management. 用于糖尿病闭环管理的可穿戴、可快速制造、稳定性增强型微针贴片。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-19 DOI: 10.1038/s41378-024-00663-y
Yiqun Liu, Li Yang, Yue Cui
{"title":"A wearable, rapidly manufacturable, stability-enhancing microneedle patch for closed-loop diabetes management.","authors":"Yiqun Liu, Li Yang, Yue Cui","doi":"10.1038/s41378-024-00663-y","DOIUrl":"https://doi.org/10.1038/s41378-024-00663-y","url":null,"abstract":"<p><p>The development of a wearable, easy-to-fabricate, and stable intelligent minisystem is highly desired for the closed-loop management of diabetes. Conventional systems always suffer from large size, high cost, low stability, or complex fabrication. Here, we show for the first time a wearable, rapidly manufacturable, stability-enhancing microneedle patch for diabetes management. The patch consists of a graphene composite ink-printed sensor on hollow microneedles, a polyethylene glycol (PEG)-functionalized electroosmotic micropump integrated with the microneedles, and a printed circuit board for precise and intelligent control of the sensor and pump to detect interstitial glucose and deliver insulin through the hollow channels. Via synthesizing and printing the graphene composite ink, the sensor fabrication process is fast and the sensing electrodes are stable. The PEG functionalization enables the micropump a significantly higher stability in delivering insulin, extending its lifetime from days to weeks. The patch successfully demonstrated excellent blood glucose control in diabetic rats. This work may introduce a new paradigm for building new closed-loop systems and shows great promise for widespread use in patients with diabetes.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"112"},"PeriodicalIF":7.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A wearable, rapidly manufacturable, stability-enhancing microneedle patch for closed-loop diabetes management. 用于糖尿病闭环管理的可穿戴、可快速制造、稳定性增强型微针贴片。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-19 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00663-y
Yiqun Liu, Li Yang, Yue Cui
{"title":"A wearable, rapidly manufacturable, stability-enhancing microneedle patch for closed-loop diabetes management.","authors":"Yiqun Liu, Li Yang, Yue Cui","doi":"10.1038/s41378-024-00663-y","DOIUrl":"10.1038/s41378-024-00663-y","url":null,"abstract":"<p><p>The development of a wearable, easy-to-fabricate, and stable intelligent minisystem is highly desired for the closed-loop management of diabetes. Conventional systems always suffer from large size, high cost, low stability, or complex fabrication. Here, we show for the first time a wearable, rapidly manufacturable, stability-enhancing microneedle patch for diabetes management. The patch consists of a graphene composite ink-printed sensor on hollow microneedles, a polyethylene glycol (PEG)-functionalized electroosmotic micropump integrated with the microneedles, and a printed circuit board for precise and intelligent control of the sensor and pump to detect interstitial glucose and deliver insulin through the hollow channels. Via synthesizing and printing the graphene composite ink, the sensor fabrication process is fast and the sensing electrodes are stable. The PEG functionalization enables the micropump a significantly higher stability in delivering insulin, extending its lifetime from days to weeks. The patch successfully demonstrated excellent blood glucose control in diabetic rats. This work may introduce a new paradigm for building new closed-loop systems and shows great promise for widespread use in patients with diabetes.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"112"},"PeriodicalIF":7.3,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142009032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An integrated micromachined flexible ultrasonic-inductive sensor for pipe contaminant multiparameter detection. 用于管道污染物多参数检测的集成微机械柔性超声感应传感器。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-16 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00734-0
Zheng Yuan, Xiaoyu Wu, Zhikang Li, Jiawei Yuan, Yihe Zhao, Zixuan Li, Shaohui Qin, Qi Ma, Xuan Shi, Zilong Zhao, Jiazhu Li, Shiwang Zhang, Weixuan Jing, Xiaozhang Wang, Libo Zhao
{"title":"An integrated micromachined flexible ultrasonic-inductive sensor for pipe contaminant multiparameter detection.","authors":"Zheng Yuan, Xiaoyu Wu, Zhikang Li, Jiawei Yuan, Yihe Zhao, Zixuan Li, Shaohui Qin, Qi Ma, Xuan Shi, Zilong Zhao, Jiazhu Li, Shiwang Zhang, Weixuan Jing, Xiaozhang Wang, Libo Zhao","doi":"10.1038/s41378-024-00734-0","DOIUrl":"10.1038/s41378-024-00734-0","url":null,"abstract":"<p><p>Pipe contaminant detection holds considerable importance within various industries, such as the aviation, maritime, medicine, and other pertinent fields. This capability is beneficial for forecasting equipment potential failures, ascertaining operational situations, timely maintenance, and lifespan prediction. However, the majority of existing methods operate offline, and the detectable parameters online are relatively singular. This constraint hampers real-time on-site detection and comprehensive assessments of equipment status. To address these challenges, this paper proposes a sensing method that integrates an ultrasonic unit and an electromagnetic inductive unit for the real-time detection of diverse contaminants and flow rates within a pipeline. The ultrasonic unit comprises a flexible transducer patch fabricated through micromachining technology, which can not only make installation easier but also focus the sound field. Moreover, the sensing unit incorporates three symmetrical solenoid coils. Through a comprehensive analysis of ultrasonic and induction signals, the proposed method can be used to effectively discriminate magnetic metal particles (e.g., iron), nonmagnetic metal particles (e.g., copper), nonmetallic particles (e.g., ceramics), and bubbles. This inclusive categorization encompasses nearly all types of contaminants that may be present in a pipeline. Furthermore, the fluid velocity can be determined through the ultrasonic Doppler frequency shift. The efficacy of the proposed detection principle has been validated by mathematical models and finite element simulations. Various contaminants with diverse velocities were systematically tested within a 14 mm diameter pipe. The experimental results demonstrate that the proposed sensor can effectively detect contaminants within the 0.5-3 mm range, accurately distinguish contaminant types, and measure flow velocity.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"111"},"PeriodicalIF":7.3,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142000388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient AlGaN-based deep-ultraviolet light-emitting diodes: from bandgap engineering to device craft. 基于氮化铝镓的高效深紫外发光二极管:从带隙工程到器件工艺。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-13 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00737-x
Xu Liu, Zhenxing Lv, Zhefu Liao, Yuechang Sun, Ziqi Zhang, Ke Sun, Qianxi Zhou, Bin Tang, Hansong Geng, Shengli Qi, Shengjun Zhou
{"title":"Highly efficient AlGaN-based deep-ultraviolet light-emitting diodes: from bandgap engineering to device craft.","authors":"Xu Liu, Zhenxing Lv, Zhefu Liao, Yuechang Sun, Ziqi Zhang, Ke Sun, Qianxi Zhou, Bin Tang, Hansong Geng, Shengli Qi, Shengjun Zhou","doi":"10.1038/s41378-024-00737-x","DOIUrl":"10.1038/s41378-024-00737-x","url":null,"abstract":"<p><p>AlGaN-based light-emitting diodes (LEDs) operating in the deep-ultraviolet (DUV) spectral range (210-280 nm) have demonstrated potential applications in physical sterilization. However, the poor external quantum efficiency (EQE) hinders further advances in the emission performance of AlGaN-based DUV LEDs. Here, we demonstrate the performance of 270-nm AlGaN-based DUV LEDs beyond the state-of-the-art by exploiting the innovative combination of bandgap engineering and device craft. By adopting tailored multiple quantum wells (MQWs), a reflective Al reflector, a low-optical-loss tunneling junction (TJ) and a dielectric SiO<sub>2</sub> insertion structure (IS-SiO<sub>2</sub>), outstanding light output powers (LOPs) of 140.1 mW are achieved in our DUV LEDs at 850 mA. The EQEs of our DUV LEDs are 4.5 times greater than those of their conventional counterparts. This comprehensive approach overcomes the major difficulties commonly faced in the pursuit of high-performance AlGaN-based DUV LEDs, such as strong quantum-confined Stark effect (QCSE), severe optical absorption in the p-electrode/ohmic contact layer and poor transverse magnetic (TM)-polarized light extraction. Furthermore, the on-wafer electroluminescence characterization validated the scalability of our DUV LEDs to larger production scales. Our work is promising for the development of highly efficient AlGaN-based DUV LEDs.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"110"},"PeriodicalIF":7.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ultrathin, rapidly fabricated, flexible giant magnetoresistive electronic skin. 超薄、快速制造、柔性巨型磁阻电子皮肤。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00716-2
Junjie Zhang, Zhenhu Jin, Guangyuan Chen, Jiamin Chen
{"title":"An ultrathin, rapidly fabricated, flexible giant magnetoresistive electronic skin.","authors":"Junjie Zhang, Zhenhu Jin, Guangyuan Chen, Jiamin Chen","doi":"10.1038/s41378-024-00716-2","DOIUrl":"10.1038/s41378-024-00716-2","url":null,"abstract":"<p><p>In recent years, there has been a significant increase in the prevalence of electronic wearables, among which flexible magnetoelectronic skin has emerged as a key component. This technology is part of the rapidly progressing field of flexible wearable electronics, which has facilitated a new human perceptual development known as the magnetic sense. However, the magnetoelectronic skin is limited due to its low sensitivity and substantial field limitations as a wearable electronic device for sensing minor magnetic fields. Additionally, achieving efficient and non-destructive delamination in flexible magnetic sensors remains a significant challenge, hindering their development. In this study, we demonstrate a novel magnetoelectronic touchless interactive device that utilizes a flexible giant magnetoresistive sensor array. The flexible magnetic sensor array was developed through an electrochemical delamination process, and the resultant ultra-thin flexible electronic system possessed both ultra-thin and non-destructive characteristics. The flexible magnetic sensor is capable of achieving a bending angle of up to 90 degrees, maintaining its performance integrity even after multiple repetitive bending cycles. Our study also provides demonstrations of non-contact interaction and pressure sensing. This research is anticipated to significantly contribute to the advancement of high-performance flexible magnetic sensors and catalyze the development of more sophisticated magnetic electronic skins.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"109"},"PeriodicalIF":7.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capillary effect-based selective sealing strategy for increasing piezoelectric MEMS speaker performance. 基于毛细管效应的选择性密封策略,用于提高压电微机电系统扬声器的性能。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-07 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00753-x
Yan Wang, Tunan Lv, Junning Zhang, Hongbin Yu
{"title":"Capillary effect-based selective sealing strategy for increasing piezoelectric MEMS speaker performance.","authors":"Yan Wang, Tunan Lv, Junning Zhang, Hongbin Yu","doi":"10.1038/s41378-024-00753-x","DOIUrl":"10.1038/s41378-024-00753-x","url":null,"abstract":"<p><p>To address the serious acoustic performance deterioration induced by air leakage in the low-frequency range and the asynchronous vibration in electroacoustic transduction structures near the resonant frequency, a novel sealing strategy is proposed that targets one of the most widely reported piezoelectric MEMS speaker designs. This design consists of multiple cantilever beams, in which the air gaps between cantilevers are automatically and selectively filled with liquid polydimethylsiloxane (PDMS) via the capillary effect, followed by curing. In the proof-of-concept demonstration, the sound pressure level (SPL) within the frequency range lower than 100 Hz markedly increased after sealing in an experiment using an IEC ear simulator. Specifically, the SPL is increased by 4.9 dB at 20 Hz for a 40 V<sub>pp</sub> driving voltage. Moreover, the deteriorated SPL response near the resonant frequencies of the cantilever beams (18 kHz-19 kHz) caused by their asynchronous vibration induced by the fabrication process nonuniformity also significantly improved, which successfully increased the SPL to approximately 17.5 dB. Moreover, sealed devices feature nearly the same SPL response as the initial counterpart in the frequency band from 100 Hz to 16 kHz and a total harmonic distortion (THD) of 0.728% at 1 kHz for a 40 V<sub>pp</sub> driving voltage. Compared with existing sealing methods, the current approach offers easy operation, low damage risk, excellent repeatability/reliability and excellent robustness advantages and provides a promising technical solution for MEMS acoustic devices.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"108"},"PeriodicalIF":7.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile assembly of flexible, stretchable and attachable symmetric microsupercapacitors with wide working voltage windows and favorable durability 轻松组装具有宽工作电压窗口和良好耐久性的柔性、可拉伸和可附着对称微型超级电容器
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-02 DOI: 10.1038/s41378-024-00742-0
Xiangguang Han, Xiaoyu Wu, Libo Zhao, Min Li, Chen Jia, Zhikang Li, Jiaqi Xie, Guoxi Luo, Ping Yang, Rabah Boukherroub, Yurdanur Türker, Mert Umut Özkaynak, Koray Bahadır Dönmez
{"title":"Facile assembly of flexible, stretchable and attachable symmetric microsupercapacitors with wide working voltage windows and favorable durability","authors":"Xiangguang Han, Xiaoyu Wu, Libo Zhao, Min Li, Chen Jia, Zhikang Li, Jiaqi Xie, Guoxi Luo, Ping Yang, Rabah Boukherroub, Yurdanur Türker, Mert Umut Özkaynak, Koray Bahadır Dönmez","doi":"10.1038/s41378-024-00742-0","DOIUrl":"https://doi.org/10.1038/s41378-024-00742-0","url":null,"abstract":"<p>With the increasing development of intelligent robots and wearable electronics, the demand for high-performance flexible energy storage devices is drastically increasing. In this study, flexible symmetric microsupercapacitors (MSCs) that could operate in a wide working voltage window were developed by combining laser-direct-writing graphene (LG) electrodes with a phosphoric acid-nonionic surfactant liquid crystal (PA-NI LC) gel electrolyte. To increase the flexibility and enhance the conformal ability of the MSC devices to anisotropic surfaces, after the interdigitated LG formed on the polyimide (PI) film surface, the devices were further transferred onto a flexible, stretchable and transparent polydimethylsiloxane (PDMS) substrate; this substrate displayed favorable flexibility and mechanical characteristics in the bending test. Furthermore, the electrochemical performances of the symmetric MSCs with various electrode widths (300, 400, 500 and 600 μm) were evaluated. The findings revealed that symmetric MSC devices could operate in a large voltage range (0–1.5 V); additionally, the device with a 300 μm electrode width (MSC-300) exhibited the largest areal capacitance of 2.3 mF cm<sup>−2</sup> at 0.07 mA cm<sup>−2</sup> and an areal (volumetric) energy density of 0.72 μWh cm<sup>−</sup><sup>2</sup> (0.36 mWh cm<sup>−</sup><sup>3</sup>) at 55.07 μW cm<sup>−2</sup> (27.54 mW cm<sup>−3</sup>), along with favorable mechanical and cycling stability. After charging for ~20 s, two MSC-300 devices connected in series could supply energy to a calculator to operate for ~130 s, showing its practical application potential as an energy storage device. Moreover, the device displayed favorable reversibility, stability and durability. After 12 months of aging in air at room temperature, its electrochemical performance was not altered, and after charging-discharging measurements for 5000 cycles at 0.07 mA cm<sup>−2</sup>, ~93.6% of the areal capacitance was still retained; these results demonstrated its practical long-term application potential as an energy storage device.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"3 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A programmable microfluidic platform to monitor calcium dynamics in microglia during inflammation 监测炎症期间小胶质细胞钙动态的可编程微流控平台
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-01 DOI: 10.1038/s41378-024-00733-1
Adam Shebindu, Durga Kaveti, Linda Umutoni, Gia Kirk, Michael D. Burton, Caroline N. Jones
{"title":"A programmable microfluidic platform to monitor calcium dynamics in microglia during inflammation","authors":"Adam Shebindu, Durga Kaveti, Linda Umutoni, Gia Kirk, Michael D. Burton, Caroline N. Jones","doi":"10.1038/s41378-024-00733-1","DOIUrl":"https://doi.org/10.1038/s41378-024-00733-1","url":null,"abstract":"<p>Neuroinflammation is characterized by the elevation of cytokines and adenosine triphosphate (ATP), which in turn activates microglia. These immunoregulatory molecules typically form gradients in vivo, which significantly influence microglial behaviors such as increasing calcium signaling, migration, phagocytosis, and cytokine secretion. Quantifying microglial calcium signaling in the context of inflammation holds the potential for developing precise therapeutic strategies for neurological diseases. However, the current calcium imaging systems are technically challenging to operate, necessitate large volumes of expensive reagents and cells, and model immunoregulatory molecules as uniform concentrations, failing to accurately replicate the in vivo microenvironment. In this study, we introduce a novel calcium monitoring micro-total analysis system (CAM-μTAS) designed to quantify calcium dynamics in microglia (BV2 cells) within defined cytokine gradients. Leveraging programmable pneumatically actuated lifting gate microvalve arrays and a Quake valve, CAM-μTAS delivers cytokine gradients to microglia, mimicking neuroinflammation. Our device automates sample handling and cell culture, enabling rapid media changes in just 1.5 s, thus streamlining the experimental workflow. By analyzing BV2 calcium transient latency to peak, we demonstrate location-dependent microglial activation patterns based on cytokine and ATP gradients, offering insights contrasting those of non-gradient-based perfusion systems. By harnessing advancements in microsystem technology to quantify calcium dynamics, we can construct simplified human models of neurological disorders, unravel the intricate mechanisms of cell-cell signaling, and conduct robust evaluations of novel therapeutics.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"89 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信