Microsystems & Nanoengineering最新文献

筛选
英文 中文
Highly efficient AlGaN-based deep-ultraviolet light-emitting diodes: from bandgap engineering to device craft. 基于氮化铝镓的高效深紫外发光二极管:从带隙工程到器件工艺。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-13 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00737-x
Xu Liu, Zhenxing Lv, Zhefu Liao, Yuechang Sun, Ziqi Zhang, Ke Sun, Qianxi Zhou, Bin Tang, Hansong Geng, Shengli Qi, Shengjun Zhou
{"title":"Highly efficient AlGaN-based deep-ultraviolet light-emitting diodes: from bandgap engineering to device craft.","authors":"Xu Liu, Zhenxing Lv, Zhefu Liao, Yuechang Sun, Ziqi Zhang, Ke Sun, Qianxi Zhou, Bin Tang, Hansong Geng, Shengli Qi, Shengjun Zhou","doi":"10.1038/s41378-024-00737-x","DOIUrl":"10.1038/s41378-024-00737-x","url":null,"abstract":"<p><p>AlGaN-based light-emitting diodes (LEDs) operating in the deep-ultraviolet (DUV) spectral range (210-280 nm) have demonstrated potential applications in physical sterilization. However, the poor external quantum efficiency (EQE) hinders further advances in the emission performance of AlGaN-based DUV LEDs. Here, we demonstrate the performance of 270-nm AlGaN-based DUV LEDs beyond the state-of-the-art by exploiting the innovative combination of bandgap engineering and device craft. By adopting tailored multiple quantum wells (MQWs), a reflective Al reflector, a low-optical-loss tunneling junction (TJ) and a dielectric SiO<sub>2</sub> insertion structure (IS-SiO<sub>2</sub>), outstanding light output powers (LOPs) of 140.1 mW are achieved in our DUV LEDs at 850 mA. The EQEs of our DUV LEDs are 4.5 times greater than those of their conventional counterparts. This comprehensive approach overcomes the major difficulties commonly faced in the pursuit of high-performance AlGaN-based DUV LEDs, such as strong quantum-confined Stark effect (QCSE), severe optical absorption in the p-electrode/ohmic contact layer and poor transverse magnetic (TM)-polarized light extraction. Furthermore, the on-wafer electroluminescence characterization validated the scalability of our DUV LEDs to larger production scales. Our work is promising for the development of highly efficient AlGaN-based DUV LEDs.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"110"},"PeriodicalIF":7.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141982700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ultrathin, rapidly fabricated, flexible giant magnetoresistive electronic skin. 超薄、快速制造、柔性巨型磁阻电子皮肤。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-12 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00716-2
Junjie Zhang, Zhenhu Jin, Guangyuan Chen, Jiamin Chen
{"title":"An ultrathin, rapidly fabricated, flexible giant magnetoresistive electronic skin.","authors":"Junjie Zhang, Zhenhu Jin, Guangyuan Chen, Jiamin Chen","doi":"10.1038/s41378-024-00716-2","DOIUrl":"10.1038/s41378-024-00716-2","url":null,"abstract":"<p><p>In recent years, there has been a significant increase in the prevalence of electronic wearables, among which flexible magnetoelectronic skin has emerged as a key component. This technology is part of the rapidly progressing field of flexible wearable electronics, which has facilitated a new human perceptual development known as the magnetic sense. However, the magnetoelectronic skin is limited due to its low sensitivity and substantial field limitations as a wearable electronic device for sensing minor magnetic fields. Additionally, achieving efficient and non-destructive delamination in flexible magnetic sensors remains a significant challenge, hindering their development. In this study, we demonstrate a novel magnetoelectronic touchless interactive device that utilizes a flexible giant magnetoresistive sensor array. The flexible magnetic sensor array was developed through an electrochemical delamination process, and the resultant ultra-thin flexible electronic system possessed both ultra-thin and non-destructive characteristics. The flexible magnetic sensor is capable of achieving a bending angle of up to 90 degrees, maintaining its performance integrity even after multiple repetitive bending cycles. Our study also provides demonstrations of non-contact interaction and pressure sensing. This research is anticipated to significantly contribute to the advancement of high-performance flexible magnetic sensors and catalyze the development of more sophisticated magnetic electronic skins.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"109"},"PeriodicalIF":7.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Capillary effect-based selective sealing strategy for increasing piezoelectric MEMS speaker performance. 基于毛细管效应的选择性密封策略,用于提高压电微机电系统扬声器的性能。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-07 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00753-x
Yan Wang, Tunan Lv, Junning Zhang, Hongbin Yu
{"title":"Capillary effect-based selective sealing strategy for increasing piezoelectric MEMS speaker performance.","authors":"Yan Wang, Tunan Lv, Junning Zhang, Hongbin Yu","doi":"10.1038/s41378-024-00753-x","DOIUrl":"10.1038/s41378-024-00753-x","url":null,"abstract":"<p><p>To address the serious acoustic performance deterioration induced by air leakage in the low-frequency range and the asynchronous vibration in electroacoustic transduction structures near the resonant frequency, a novel sealing strategy is proposed that targets one of the most widely reported piezoelectric MEMS speaker designs. This design consists of multiple cantilever beams, in which the air gaps between cantilevers are automatically and selectively filled with liquid polydimethylsiloxane (PDMS) via the capillary effect, followed by curing. In the proof-of-concept demonstration, the sound pressure level (SPL) within the frequency range lower than 100 Hz markedly increased after sealing in an experiment using an IEC ear simulator. Specifically, the SPL is increased by 4.9 dB at 20 Hz for a 40 V<sub>pp</sub> driving voltage. Moreover, the deteriorated SPL response near the resonant frequencies of the cantilever beams (18 kHz-19 kHz) caused by their asynchronous vibration induced by the fabrication process nonuniformity also significantly improved, which successfully increased the SPL to approximately 17.5 dB. Moreover, sealed devices feature nearly the same SPL response as the initial counterpart in the frequency band from 100 Hz to 16 kHz and a total harmonic distortion (THD) of 0.728% at 1 kHz for a 40 V<sub>pp</sub> driving voltage. Compared with existing sealing methods, the current approach offers easy operation, low damage risk, excellent repeatability/reliability and excellent robustness advantages and provides a promising technical solution for MEMS acoustic devices.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"108"},"PeriodicalIF":7.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile assembly of flexible, stretchable and attachable symmetric microsupercapacitors with wide working voltage windows and favorable durability 轻松组装具有宽工作电压窗口和良好耐久性的柔性、可拉伸和可附着对称微型超级电容器
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-02 DOI: 10.1038/s41378-024-00742-0
Xiangguang Han, Xiaoyu Wu, Libo Zhao, Min Li, Chen Jia, Zhikang Li, Jiaqi Xie, Guoxi Luo, Ping Yang, Rabah Boukherroub, Yurdanur Türker, Mert Umut Özkaynak, Koray Bahadır Dönmez
{"title":"Facile assembly of flexible, stretchable and attachable symmetric microsupercapacitors with wide working voltage windows and favorable durability","authors":"Xiangguang Han, Xiaoyu Wu, Libo Zhao, Min Li, Chen Jia, Zhikang Li, Jiaqi Xie, Guoxi Luo, Ping Yang, Rabah Boukherroub, Yurdanur Türker, Mert Umut Özkaynak, Koray Bahadır Dönmez","doi":"10.1038/s41378-024-00742-0","DOIUrl":"https://doi.org/10.1038/s41378-024-00742-0","url":null,"abstract":"<p>With the increasing development of intelligent robots and wearable electronics, the demand for high-performance flexible energy storage devices is drastically increasing. In this study, flexible symmetric microsupercapacitors (MSCs) that could operate in a wide working voltage window were developed by combining laser-direct-writing graphene (LG) electrodes with a phosphoric acid-nonionic surfactant liquid crystal (PA-NI LC) gel electrolyte. To increase the flexibility and enhance the conformal ability of the MSC devices to anisotropic surfaces, after the interdigitated LG formed on the polyimide (PI) film surface, the devices were further transferred onto a flexible, stretchable and transparent polydimethylsiloxane (PDMS) substrate; this substrate displayed favorable flexibility and mechanical characteristics in the bending test. Furthermore, the electrochemical performances of the symmetric MSCs with various electrode widths (300, 400, 500 and 600 μm) were evaluated. The findings revealed that symmetric MSC devices could operate in a large voltage range (0–1.5 V); additionally, the device with a 300 μm electrode width (MSC-300) exhibited the largest areal capacitance of 2.3 mF cm<sup>−2</sup> at 0.07 mA cm<sup>−2</sup> and an areal (volumetric) energy density of 0.72 μWh cm<sup>−</sup><sup>2</sup> (0.36 mWh cm<sup>−</sup><sup>3</sup>) at 55.07 μW cm<sup>−2</sup> (27.54 mW cm<sup>−3</sup>), along with favorable mechanical and cycling stability. After charging for ~20 s, two MSC-300 devices connected in series could supply energy to a calculator to operate for ~130 s, showing its practical application potential as an energy storage device. Moreover, the device displayed favorable reversibility, stability and durability. After 12 months of aging in air at room temperature, its electrochemical performance was not altered, and after charging-discharging measurements for 5000 cycles at 0.07 mA cm<sup>−2</sup>, ~93.6% of the areal capacitance was still retained; these results demonstrated its practical long-term application potential as an energy storage device.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"3 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A programmable microfluidic platform to monitor calcium dynamics in microglia during inflammation 监测炎症期间小胶质细胞钙动态的可编程微流控平台
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-08-01 DOI: 10.1038/s41378-024-00733-1
Adam Shebindu, Durga Kaveti, Linda Umutoni, Gia Kirk, Michael D. Burton, Caroline N. Jones
{"title":"A programmable microfluidic platform to monitor calcium dynamics in microglia during inflammation","authors":"Adam Shebindu, Durga Kaveti, Linda Umutoni, Gia Kirk, Michael D. Burton, Caroline N. Jones","doi":"10.1038/s41378-024-00733-1","DOIUrl":"https://doi.org/10.1038/s41378-024-00733-1","url":null,"abstract":"<p>Neuroinflammation is characterized by the elevation of cytokines and adenosine triphosphate (ATP), which in turn activates microglia. These immunoregulatory molecules typically form gradients in vivo, which significantly influence microglial behaviors such as increasing calcium signaling, migration, phagocytosis, and cytokine secretion. Quantifying microglial calcium signaling in the context of inflammation holds the potential for developing precise therapeutic strategies for neurological diseases. However, the current calcium imaging systems are technically challenging to operate, necessitate large volumes of expensive reagents and cells, and model immunoregulatory molecules as uniform concentrations, failing to accurately replicate the in vivo microenvironment. In this study, we introduce a novel calcium monitoring micro-total analysis system (CAM-μTAS) designed to quantify calcium dynamics in microglia (BV2 cells) within defined cytokine gradients. Leveraging programmable pneumatically actuated lifting gate microvalve arrays and a Quake valve, CAM-μTAS delivers cytokine gradients to microglia, mimicking neuroinflammation. Our device automates sample handling and cell culture, enabling rapid media changes in just 1.5 s, thus streamlining the experimental workflow. By analyzing BV2 calcium transient latency to peak, we demonstrate location-dependent microglial activation patterns based on cytokine and ATP gradients, offering insights contrasting those of non-gradient-based perfusion systems. By harnessing advancements in microsystem technology to quantify calcium dynamics, we can construct simplified human models of neurological disorders, unravel the intricate mechanisms of cell-cell signaling, and conduct robust evaluations of novel therapeutics.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"89 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High temperature heat flux sensor with ITO/In2O3 thermopile for extreme environment sensing. 采用 ITO/In2O3 热电堆的高温热通量传感器,用于极端环境传感。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-25 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00748-8
Helei Dong, Meimei Lu, Weifeng Wang, Qiulin Tan
{"title":"High temperature heat flux sensor with ITO/In<sub>2</sub>O<sub>3</sub> thermopile for extreme environment sensing.","authors":"Helei Dong, Meimei Lu, Weifeng Wang, Qiulin Tan","doi":"10.1038/s41378-024-00748-8","DOIUrl":"10.1038/s41378-024-00748-8","url":null,"abstract":"<p><p>Hypersonic vehicles and aircraft engine blades face complex and harsh environments such as high heat flow density and high temperature, and they are generally narrow curved spaces, making it impossible to actually install them for testing. Thin-film heat flux sensors (HFSs) have the advantages of small size, fast response, and in-situ fabrication, but they are prone to reach thermal equilibrium and thus fail during testing. In our manuscript, an ITO-In<sub>2</sub>O<sub>3</sub> thick film heat flux sensor (HFS) is designed, and a high-temperature heat flux test system is built to simulate the working condition of a blade subjected to heat flow impact. The simulation and test results show that the test performance of the thick-film HFS is improved by optimizing the structure and parameters. Under the condition of no water cooling, the designed HFS can realize short-time heat flux monitoring at 1450 °C and long-term stable monitoring at 1300 °C and below. With a maximum output thermopotential of 17.8 mV and an average test sensitivity of 0.035 mV/(kW/m<sup>2</sup>), the designed HFS has superior high-temperature resistance that cannot be achieved by other existing thin (thick) film HFSs. Therefore, the designed HFS has great potential for application in harsh environments such as aerospace, weaponry, and industrial metallurgy.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"105"},"PeriodicalIF":7.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141759741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small-size temperature/high-pressure integrated sensor via flip-chip method 通过倒装芯片法实现小型温度/高压集成传感器
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-23 DOI: 10.1038/s41378-024-00723-3
Mimi Huang, Xiaoyu Wu, Libo Zhao, Xiangguang Han, Yong Xia, Yi Gao, Zeyu Cui, Cheng Zhang, Xiaokai Yang, Zhixia Qiao, Zhikang Li, Feng Han, Ping Yang, Zhuangde Jiang
{"title":"Small-size temperature/high-pressure integrated sensor via flip-chip method","authors":"Mimi Huang, Xiaoyu Wu, Libo Zhao, Xiangguang Han, Yong Xia, Yi Gao, Zeyu Cui, Cheng Zhang, Xiaokai Yang, Zhixia Qiao, Zhikang Li, Feng Han, Ping Yang, Zhuangde Jiang","doi":"10.1038/s41378-024-00723-3","DOIUrl":"https://doi.org/10.1038/s41378-024-00723-3","url":null,"abstract":"<p>Hydraulic technology with smaller sizes and higher reliability trends, including fault prediction and intelligent control, requires high-performance temperature and pressure-integrated sensors. Current designs rely on planar wafer- or chip-level integration, which is limited by pressure range, chip size, and low reliability. We propose a small-size temperature/high-pressure integrated sensor via the flip-chip technique. The pressure and temperature units are arranged vertically, and the sensing signals of the two units are integrated into one plane through silicon vias and gold–gold bonding, reducing the lateral size and improving the efficiency of signal transmission. The flip-chip technique ensures a reliable electrical connection. A square diaphragm with rounded corners is designed and optimised with simulation to sense high pressure based on the piezoresistive effect. The temperature sensing unit with a thin-film platinum resistor measures temperature and provides back-end high-precision compensation, which will improve the precision of the pressure unit. The integrated chip is fabricated by MEMS technology and packaged to fabricate the extremely small integrated sensor. The integrated sensor is characterised, and the pressure sensor exhibits a sensitivity and sensitivity drift of 7.97 mV/MPa and −0.19% FS in the range of 0–20 MPa and −40 to 120 °C. The linearity, hysteresis, repeatability, accuracy, basic error, and zero-time drift are 0.16% FS, 0.04% FS, 0.06% FS, 0.18% FS, ±0.23% FS and 0.04% FS, respectively. The measurement error of the temperature sensor and temperature coefficient of resistance is less than ±1 °C and 3142.997 ppm/°C, respectively. The integrated sensor has broad applicability in fault diagnosis and safety monitoring of high-end equipment such as automobile detection, industrial equipment, and oil drilling platforms.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"98 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape-position perceptive fusion electronic skin with autonomous learning for gesture interaction 具有自主学习功能的形位感知融合电子皮肤,用于手势交互
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-22 DOI: 10.1038/s41378-024-00739-9
Qian Wang, Mingming Li, Pingping Guo, Liang Gao, Ling Weng, Wenmei Huang
{"title":"Shape-position perceptive fusion electronic skin with autonomous learning for gesture interaction","authors":"Qian Wang, Mingming Li, Pingping Guo, Liang Gao, Ling Weng, Wenmei Huang","doi":"10.1038/s41378-024-00739-9","DOIUrl":"https://doi.org/10.1038/s41378-024-00739-9","url":null,"abstract":"<p>Wearable devices, such as data gloves and electronic skins, can perceive human instructions, behaviors and even emotions by tracking a hand's motion, with the help of knowledge learning. The shape or position single-mode sensor in such devices often lacks comprehensive information to perceive interactive gestures. Meanwhile, the limited computing power of wearable applications restricts the multimode fusion of different sensing data and the deployment of deep learning networks. We propose a perceptive fusion electronic skin (PFES) with a bioinspired hierarchical structure that utilizes the magnetization state of a magnetostrictive alloy film to be sensitive to external strain or magnetic field. Installed at the joints of a hand, the PFES realizes perception of curvature (joint shape) and magnetism (joint position) information by mapping corresponding signals to the two-directional continuous distribution such that the two edges represent the contributions of curvature radius and magnetic field, respectively. By autonomously selecting knowledge closer to the user's hand movement characteristics, the reinforced knowledge distillation method is developed to learn and compress a teacher model for rapid deployment on wearable devices. The PFES integrating the autonomous learning algorithm can fuse curvature-magnetism dual information, ultimately achieving human machine interaction with gesture recognition and haptic feedback for cross-space perception and manipulation.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"42 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication and characterization of high-sensitivity, wide-range, and flexible MEMS thermal flow velocity sensors 高灵敏度、宽量程和柔性 MEMS 热流速度传感器的制造和表征
IF 7.9 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-22 DOI: 10.1038/s41378-024-00740-2
Min Li, Guangzhao Qin, Chen Jia, Danyu Zhang, Zhikang Li, Xiangguang Han, Shusheng Xu, Libo Zhao, Guoxi Luo, Cunlang Liu, Ping Yang, Qijing Lin
{"title":"Fabrication and characterization of high-sensitivity, wide-range, and flexible MEMS thermal flow velocity sensors","authors":"Min Li, Guangzhao Qin, Chen Jia, Danyu Zhang, Zhikang Li, Xiangguang Han, Shusheng Xu, Libo Zhao, Guoxi Luo, Cunlang Liu, Ping Yang, Qijing Lin","doi":"10.1038/s41378-024-00740-2","DOIUrl":"https://doi.org/10.1038/s41378-024-00740-2","url":null,"abstract":"<p>With the rapid development of various fields, including aerospace, industrial measurement and control, and medical monitoring, the need to quantify flow velocity measurements is increasing. It is difficult for traditional flow velocity sensors to fulfill accuracy requirements for velocity measurements due to their small ranges, susceptibility to environmental impacts, and instability. Herein, to optimize sensor performance, a flexible microelectromechanical system (MEMS) thermal flow sensor is proposed that combines the working principles of thermal loss and thermal temperature difference and utilizes a flexible cavity substrate made of a low-thermal-conductivity polyimide/SiO<sub>2</sub> (PI/SiO<sub>2</sub>) composite porous film to broaden the measurement range and improve the sensitivity. The measurement results show that the maximum measurable flow velocity can reach 30 m/s with a resolution of 5.4 mm/s. The average sensitivities of the sensor are 59.49 mV/(m s<sup>−1</sup>) in the medium-to-low wind velocity range of 0–2 m/s and 467.31 mV/(m s<sup>−1</sup>) in the wind velocity range of 2–30 m/s. The sensor proposed in this work can enable new applications of flexible flow sensors and wearable devices.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"26 1","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metasurface-integrated elliptically polarized laser-pumped SERF magnetometers. 元表面集成椭圆偏振激光泵浦 SERF 磁强计。
IF 7.3 1区 工程技术
Microsystems & Nanoengineering Pub Date : 2024-07-19 eCollection Date: 2024-01-01 DOI: 10.1038/s41378-024-00715-3
Zihua Liang, Jinsheng Hu, Peng Zhou, Lu Liu, Gen Hu, Ankang Wang, Mao Ye
{"title":"Metasurface-integrated elliptically polarized laser-pumped SERF magnetometers.","authors":"Zihua Liang, Jinsheng Hu, Peng Zhou, Lu Liu, Gen Hu, Ankang Wang, Mao Ye","doi":"10.1038/s41378-024-00715-3","DOIUrl":"10.1038/s41378-024-00715-3","url":null,"abstract":"<p><p>The emergence of biomagnetism imaging has led to the development of ultrasensitive and compact spin-exchange relaxation-free (SERF) atomic magnetometers that promise high-resolution magnetocardiography (MCG) and magnetoencephalography (MEG). However, conventional optical components are not compatible with nanofabrication processes that enable the integration of atomic magnetometers on chips, especially for elliptically polarized laser-pumped SERF magnetometers with bulky optical systems. In this study, an elliptical-polarization pumping beam (at 795 nm) is achieved through a single-piece metasurface, which results in an SERF magnetometer with a high sensitivity reaching 10.61 fT/Hz<sup>1/2</sup> by utilizing a <sup>87</sup>Rb vapor cell with a 3 mm inner diameter. To achieve the optimum theoretical polarization, our design combines a computer-assisted optimization algorithm with an emerging metasurface design process. The metasurface is fabricated with 550 nm thick silicon-rich silicon nitride on a 2 × 2 <i>cm</i> <sup>2</sup> SiO<sub>2</sub> substrate and features a 22.17° ellipticity angle (a deviation from the target polarization of less than 2%) and more than 80% transmittance. This study provides a feasible approach for on-chip polarization control of future all-integrated atomic magnetometers, which will further pave the way for high-resolution biomagnetism imaging and portable atomic sensing applications.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"101"},"PeriodicalIF":7.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141734629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信