Multi-sized microelectrode array coupled with micro-electroporation for effective recording of intracellular action potential.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Xingyuan Xu, Zhengjie Liu, Jing Liu, Chuanjie Yao, Xi Chen, Xinshuo Huang, Shuang Huang, Peng Shi, Mingqiang Li, Li Wang, Yu Tao, Hui-Jiuan Chen, Xi Xie
{"title":"Multi-sized microelectrode array coupled with micro-electroporation for effective recording of intracellular action potential.","authors":"Xingyuan Xu, Zhengjie Liu, Jing Liu, Chuanjie Yao, Xi Chen, Xinshuo Huang, Shuang Huang, Peng Shi, Mingqiang Li, Li Wang, Yu Tao, Hui-Jiuan Chen, Xi Xie","doi":"10.1038/s41378-025-00887-6","DOIUrl":null,"url":null,"abstract":"<p><p>Microelectrode arrays (MEAs) are essential tools for studying the extracellular electrophysiology of cardiomyocytes in a multi-channel format. However, they typically lack the capability to record intracellular action potentials (APs). Recent studies have relied on costly fabrication of high-resolution microelectrodes combined with electroporation for intracellular recordings, but the impact of microelectrode size on micro-electroporation and the quality of intracellular signal acquisition has yet to be explored. Understanding these effects could facilitate the design of microelectrodes of various sizes to enable lower-cost manufacturing processes. In this study, we investigated the influence of microelectrode size on intracellular AP parameters and recording metrics post-micro-electroporation through simulations and experiments. We fabricated microelectrodes of different sizes using standard photolithography techniques to record cardiomyocyte APs from various culture environments with coupled micro-electroporation. Our findings indicate that larger microelectrodes generally recorded electrophysiological signals with higher amplitude and better signal-to-noise ratios, while smaller electrodes exhibited higher perforation efficiency, AP duration, and single-cell signal ratios. This work demonstrates that the micro-electroporation technique can be applied to larger microelectrodes for intracellular recordings, rather than being limited to high-resolution designs. This approach may provide new opportunities for fabricating microelectrodes using alternative low-cost manufacturing techniques for high-quality intracellular AP recordings.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"85"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075571/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00887-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Microelectrode arrays (MEAs) are essential tools for studying the extracellular electrophysiology of cardiomyocytes in a multi-channel format. However, they typically lack the capability to record intracellular action potentials (APs). Recent studies have relied on costly fabrication of high-resolution microelectrodes combined with electroporation for intracellular recordings, but the impact of microelectrode size on micro-electroporation and the quality of intracellular signal acquisition has yet to be explored. Understanding these effects could facilitate the design of microelectrodes of various sizes to enable lower-cost manufacturing processes. In this study, we investigated the influence of microelectrode size on intracellular AP parameters and recording metrics post-micro-electroporation through simulations and experiments. We fabricated microelectrodes of different sizes using standard photolithography techniques to record cardiomyocyte APs from various culture environments with coupled micro-electroporation. Our findings indicate that larger microelectrodes generally recorded electrophysiological signals with higher amplitude and better signal-to-noise ratios, while smaller electrodes exhibited higher perforation efficiency, AP duration, and single-cell signal ratios. This work demonstrates that the micro-electroporation technique can be applied to larger microelectrodes for intracellular recordings, rather than being limited to high-resolution designs. This approach may provide new opportunities for fabricating microelectrodes using alternative low-cost manufacturing techniques for high-quality intracellular AP recordings.

多尺寸微电极阵列与微电穿孔相结合,有效记录细胞内动作电位。
微电极阵列(MEAs)是研究多通道心肌细胞胞外电生理的重要工具。然而,它们通常缺乏记录细胞内动作电位(ap)的能力。最近的研究依赖于昂贵的高分辨率微电极结合电穿孔进行细胞内记录,但微电极尺寸对微电穿孔和细胞内信号采集质量的影响尚未探索。了解这些效应有助于设计各种尺寸的微电极,从而实现低成本的制造工艺。在这项研究中,我们通过模拟和实验研究了微电极尺寸对微电穿孔后细胞内AP参数和记录指标的影响。我们使用标准光刻技术制作了不同尺寸的微电极,通过耦合微电穿孔记录不同培养环境下的心肌细胞ap。我们的研究结果表明,较大的微电极通常记录的电生理信号具有更高的振幅和更好的信噪比,而较小的电极具有更高的穿孔效率、AP持续时间和单细胞信号比。这项工作表明,微电穿孔技术可以应用于更大的微电极进行细胞内记录,而不是局限于高分辨率的设计。这种方法可能为使用替代低成本制造技术制造高质量细胞内AP记录的微电极提供新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信