Yasemin Atiyas, Michael J Siedlik, Stephanie J Yang, David A Issadore
{"title":"Combining time domain modulation optofluidics and high dynamic range imaging for multiplexed, high throughput digital droplet assays.","authors":"Yasemin Atiyas, Michael J Siedlik, Stephanie J Yang, David A Issadore","doi":"10.1038/s41378-025-00918-2","DOIUrl":null,"url":null,"abstract":"<p><p>Digital enzyme-linked immunoassays (dELISA) have been successfully applied to the ultrasensitive quantification of analytes, including nucleic acids, proteins, cells, and extracellular vesicles, achieving robust detection limits in complex clinical specimens such as blood, and demonstrating utility across a broad range of clinical applications. The ultrasensitivity of dELISA comes from partitioning single analytes, captured onto a microbead, into millions of compartments so that they can be counted individually. There is particular interest in using dELISA for multiplexed measurements, but generating and detecting the billions of compartments necessary to perform multiplexed ultrasensitive dELISA remains a challenge. To address this, we have developed a high-throughput, optofluidic platform that performs quantitative fluorescence measurements on five populations of microbeads, each encoded with distinct ratios of two fluorescent dyes, for digital assays. The key innovation of our work is the parallelization of droplet generation and detection, combined with time-domain encoding of the excitation sources into distinct patterns that barcode the emission signal of both dyes within each bead, achieving high throughput (6 × 10<sup>6</sup> droplets/min) and accurate readout. Additionally, we modulate the exposure settings of the digital camera, capturing images of multiplexed beads and the droplet fluorescent substrate in consecutive frames, a method inspired by high dynamic range (HDR) photography. Our platform accurately classifies five populations of dual-encoded beads (accuracy > 99%) and detects bead-bound streptavidin-horseradish peroxidase molecules in a third fluorescence channel. This work establishes the technological foundation to combine high multiplexing and high throughput for droplet digital assays.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"93"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084528/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00918-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Digital enzyme-linked immunoassays (dELISA) have been successfully applied to the ultrasensitive quantification of analytes, including nucleic acids, proteins, cells, and extracellular vesicles, achieving robust detection limits in complex clinical specimens such as blood, and demonstrating utility across a broad range of clinical applications. The ultrasensitivity of dELISA comes from partitioning single analytes, captured onto a microbead, into millions of compartments so that they can be counted individually. There is particular interest in using dELISA for multiplexed measurements, but generating and detecting the billions of compartments necessary to perform multiplexed ultrasensitive dELISA remains a challenge. To address this, we have developed a high-throughput, optofluidic platform that performs quantitative fluorescence measurements on five populations of microbeads, each encoded with distinct ratios of two fluorescent dyes, for digital assays. The key innovation of our work is the parallelization of droplet generation and detection, combined with time-domain encoding of the excitation sources into distinct patterns that barcode the emission signal of both dyes within each bead, achieving high throughput (6 × 106 droplets/min) and accurate readout. Additionally, we modulate the exposure settings of the digital camera, capturing images of multiplexed beads and the droplet fluorescent substrate in consecutive frames, a method inspired by high dynamic range (HDR) photography. Our platform accurately classifies five populations of dual-encoded beads (accuracy > 99%) and detects bead-bound streptavidin-horseradish peroxidase molecules in a third fluorescence channel. This work establishes the technological foundation to combine high multiplexing and high throughput for droplet digital assays.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.