{"title":"Closed-eye intraocular pressure and eye movement monitoring via a stretchable bimodal contact lens.","authors":"Xingyi Gan, Guang Yao, Cunbo Li, Yufeng Mu, Maowen Xie, Chenzheng Zhou, Peisi Li, Qiwei Dong, Ke Chen, Kangning Zhao, Min Gao, Taisong Pan, Fang Lu, Dezhong Yao, Peng Xu, Yuan Lin","doi":"10.1038/s41378-025-00946-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic ophthalmic diseases are multivariate, time-varying, and degenerative. Smart contact lenses have emerged as a scalable platform for noninvasive ocular signal detection and disease diagnosis. However, real-time monitoring and decoupling of multiple ocular parameters, particularly when the eyes are closed, remain challenging in clinical medicine. In this work, we propose a stretchable bimodal contact lens (BCL) amalgamating self-decoupled electromagnetic capacitive intraocular pressure (CIOP) and magnetic eye movement (MEM) monitoring components. The sandwich-integrated BCL can be intimately attached to the eyeball, enabling closed-eye, wireless, and precise signal acquisition without interference. During the eye open and closed, the serpentine-geometry CIOP unit was validated on a rabbit model, achieving supered resolution (1 mmHg) and sensitivity (≥0.22 MHz mmHg<sup>-1</sup>) for reversible hypo- to hyper-IOP fluctuations. Ex vivo and in vivo MEM monitoring, based on composition-optimized magnetic interlayer film, demonstrated exceptional accuracy (≥97.25%) with eyes open and closed, surpassing existing methods. The collected CIOP and MEM data could be wirelessly aggregated and transmitted to portable devices via integrated acquisition modules within frame glasses for real-time eye healthcare. Emerging noninvasive and bimodal modalities reconcile the trade-off between minimal discomfort, eye status, and reliable measurement, spurring the widespread adoption of the integrated monitoring system for continuous ocular health monitoring.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"83"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069572/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00946-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic ophthalmic diseases are multivariate, time-varying, and degenerative. Smart contact lenses have emerged as a scalable platform for noninvasive ocular signal detection and disease diagnosis. However, real-time monitoring and decoupling of multiple ocular parameters, particularly when the eyes are closed, remain challenging in clinical medicine. In this work, we propose a stretchable bimodal contact lens (BCL) amalgamating self-decoupled electromagnetic capacitive intraocular pressure (CIOP) and magnetic eye movement (MEM) monitoring components. The sandwich-integrated BCL can be intimately attached to the eyeball, enabling closed-eye, wireless, and precise signal acquisition without interference. During the eye open and closed, the serpentine-geometry CIOP unit was validated on a rabbit model, achieving supered resolution (1 mmHg) and sensitivity (≥0.22 MHz mmHg-1) for reversible hypo- to hyper-IOP fluctuations. Ex vivo and in vivo MEM monitoring, based on composition-optimized magnetic interlayer film, demonstrated exceptional accuracy (≥97.25%) with eyes open and closed, surpassing existing methods. The collected CIOP and MEM data could be wirelessly aggregated and transmitted to portable devices via integrated acquisition modules within frame glasses for real-time eye healthcare. Emerging noninvasive and bimodal modalities reconcile the trade-off between minimal discomfort, eye status, and reliable measurement, spurring the widespread adoption of the integrated monitoring system for continuous ocular health monitoring.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.